
COLOR OBJECT TRACKING SYSTEM FOR INTERACTIVE ENTERTAINMENT

APPLICATIONS

Jaeyong Chung Kwanghyun Shim

Digital Content Research Division , ETRI (Electronics and Telecommunications Research Institute)

161 Gajung-dong, Yusung-gu, Daejeon, South Korea, zip: 305-350

{jaydream | shimkh}@etri.re.kr
ABSTRACT

"Looking human through a camera" is a potentially

powerful technique to facilitate human-computer interaction.

Many 2D/3D visual human tracking techniques have been

introduced in area of computer vision, and applied to smart

surveillance, motion analysis, interactive computer graphics

and virtual reality applications. For applications

emphasizing real time interactivity, the visual tracking

techniques need to be fast, robust, and preferably run on an

inexpensive hardware system. In this paper, we present a

relatively inexpensive (e.g. run on a high-end PC) but

reasonably robust real time motion tracking system based on

a simple 2D color object segmentation and recognition

algorithm. Users grasp color objects for achieving more

exact tracking performance on their hands and make

predefined motion gestures continuously. Through object

segmentation processing based on color information, 2D

positions of the objects are computed. And then, a motion

gesture corresponding on these 2D position trajectories is

found by a simple correlation-based matching algorithm.

Also, we demonstrate this system by applying it to a popular

interactive entertainment (e.g. TETRIS).

1. INTRODUCTION

Computer vision technology gives more convenient

interaction between human and computer or machine in

virtual reality and interactive computer graphics application

areas. With the advancement of this vision technology,

many 2D/3D visual human tracking algorithms have been

introduced with head orientation, hand gesture, gaze

tracking, human body tracking, body posture recognition,

etc[3]. For communicating with a computer, we no longer

want to use cumbersome devices such as mouse, keyboard,

glove, and wands etc. In addition, to give immersive illusion

to the users, systems should provide more natural and

intuitive way for controlling the user’s movement and action

in virtual environments, which exploit usual legs’ motion

[1], intended arm motion gestures[6], and blob-based body

tracking technique [2].

To interpret users’ intention and give interaction illusion to

users, motion gesture recognition is necessary [7][9]. Aside

from just recognizing the gesture itself, moving gestures

create another subproblem that is, detecting the starting and

ending points of the intended gesture in the midst of

position data that are streaming in. One simple solution is to

define a “still” state. For instance, the user is required to be

stationary for few seconds to signal the start and the end of

a motion command. To overcome such inconvenience, our

system finds a meaningful motion pattern from a streaming

data contained within a finite data search window [7].

Nowadays, real-time gesture or posture recognition products

are commercially available for general PC-based

environments [10][11] as well as high cost or high

performance virtual environments [4][5][8]. These

commercial products make computers easier to use. For

example, in computer game applications, rather than

pressing button, the player could perform gestures and

actions, which the computer would then recognize

[10][11][12]. Our system is similar to those in that it is a

users’ motion gesture based interaction system. The

following is the organization of this paper. First, our color

object segmentation scheme and 2D position tracking

algorithm are described. Then, motion gesture recognition

procedures with 2D position input trajectory and

correlation-based matching are described. Finally, we

demonstrate this system by applying it to a popular

interactive game (e.g. TETRIS).

2. COLOR-BASED OBJECT TRACKING

There has been a growing interest in object segmentation to

be used in various applications with object-based

functionalities such as interactivity and scalability. The

capability of extracting moving objects from image

sequences is a fundamental and crucial problem of many

vision applications. The difficulties of automatic

segmentation mainly come from defining semantically

meaningful areas. To alleviate these difficulties, we use five

color props – red, green, blue, magenta, and yellow balls.

2.1 Object Segmentation

We first gather color statistics over an image region in a

static props-taken frame. Let the color image region for each

prop be I(R,G,B).

The mean value Im(R,G,B)[color], is used for the reference

color data and the standard deviation I (R,G,B)[color] , is

V ­ 4971­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

used for threshold values on extracting objects. The mean

and deviation are calculated as follows:

where L denotes the total number of pixels in the image

region. The image region for color props are selected by the

users. Each pixel can be classified into objects or others by

evaluating the difference between the reference color data

and the current image in the color space in term of (R,G,B).

To separate out pixels in the objects, we measure Euclidian

distance in RGB color space and compare with the threshold.

The threshold value is determined in order to obtain a

desired detection rate in the subtraction operation. The

distance, Dt, and threshold, Th, are defined as follow.

where variable is determined according to the changing

lighting condition. The reasonable value is about 3.0

practically. As shown in Figure 1, threshold value

determines whether a pixel is a reference object pixel or

other pixel.

In addition, we apply morphological filter twice (3x3 close

and erode filters) to fill the hole and remove spot noises.

Figure 2 shows color props (balls) and segmented object’s

mask images, and Table 1 shows the color statistics for the

object segmentation.

2.2 2D Position Tracking

2D positions are computed from their centroids on

segmented object mask images for simplicity (See figure 2

(c) and (d)). Although some noise on an image has been

noticed, it is not significant in recognizing object motion.

For more robust 2D position tracking, we adjust camera lens

distortion error – known as rectification process, so that

linear movements on 3D real space can be preserved on 2D

image space. As shown in Figure 3, linearity of the check

board is preserved on the rectified image.

V ­ 498

Figure 4 shows tracked 2D position trajectories in the given

interval continuously. Although the red region on the real

image is large, the corresponding 2D position is represented

by a small dot by using its centroid value.

3. MOTION GESTURE RECOGNITION

The user makes continuous motion by moving an arm with

the color ball, and the position of the ball tracked by the

object segmentation scheme is used as an input to the

gesture recognition module. We modeled five basic motion

gestures for interactive entertainment environments (e.g.

arcade game, TETRIS): go left, go right, rotate left, rotate

right and drop. The motion gestures are shown in Figure 5.

 Aside from just recognizing the gesture itself, moving

gestures create another subproblem, that is, detecting the

starting and ending points of the intended gesture in the

midst of position data that are streaming in. One simple

solution is to define a “still” state, and for instance, require

the user to be stationary for few seconds to signal the start

and the end of a motion command. To overcome such

inconvenience, our method looks for a meaningful motion

pattern from a stream of data contained within a finite data

search window. The data search window starts at a

minimum length (e.g. 0.25 seconds, or 5 frames at 20 Hz

sampling rate) from the current frame, and grows to a

predefined maximum (e.g. 3 seconds, or 60 frames at 20 Hz

sample rate). The predefined minimum and maximum

lengths of the search window are determined based on

heuristics that a given gesture command would require at

least that minimum amount of time to be carried out, and

must not exceed that maximum amount of time to be

completed.

The varying length of the motion command is handled

through a normalization process of the sampled data. That is,

the motion command template data size is either truncated

or elongated to fit the input data size before applying the

match algorithm. Thus, as far as the duration of the motion

command is kept within a reasonable bound, it will be

recognized.

Figure 6. Searching for match in the data search window

Figure 7. Computing for the correlation coefficient

The above search and match process is repeated at every

data sampling period (which is about 20 Hz). Once a gesture

is recognized the data can be further analyzed for additional

input properties such as speed or acceleration. However,

being time dependent, this simple algorithm can not handle

gestures that are similar in part, for instance, between a “C”

and an “O” motion. A “C” gesture would be recognized in

the midst of giving an “O” gesture. Figure 6 show a flow

diagram for a match in the data search window.

Given a data search window, a particular motion gesture is

found through a correlation-based match algorithm. The

correlation analysis basically analyzes for how well a

regression fits the sampled data. The formula shown in

Figure 7 computes for a measure of the quality of the fit

V ­ 499

between the input and the template motion data, and the

correlation coefficient is computed in 2D dimensions.

If the correlation coefficient is higher than a predefined

threshold value (e.g. 0.85, +1 representing a perfect

correlation), it is considered as a match. By using the

correlation analysis, the ratio of correct classification is

made much less sensitive to slight tracking error. In addition,

the recognition is made independent from the size or

location of the gesture, thus there is no need for data

normalization.

4. APPLICATION

We demonstrate this system by applying it to a popular

interactive entertainment game (e.g. TETRIS). For input

command, previous five gestures - go left, go right, rotate

left, rotate right and drop – are used. A keyboard-like event

invoking module is implemented for connecting the game

application. For example, “drop” motion gesture is

corresponding to a “DOWN” arrow key in the game

application. (See Figure 8 for an overview of the

application.). All step performs in real-time, about 20 fps on

Pentium4 2.0Ghz PC environment with a IEEE 1394

camera.

In this interactive environment, a user does not input

through a keyboard any more, instead enjoys the application

with his body movement actively as shown in Figure 9.

5. CONCLUSION

In this paper, we present a relatively inexpensive (e.g. run

on a high-end PC) but reasonably robust real time motion

tracking system based on simple 2D color object

segmentation and recognition algorithm. A user grasps color

props on his one/two hands and performs predefined motion

gestures. As illustrated with an interactive entertainment

application, users could perform with ease or enjoy the

application as compared with previous keyboard interface.

The system we developed can open door to create more

stimulating interfaces to many existing applications and

bring virtual reality to the general public.

6. REFERENCES
[1] C. Chang, W. Tsai, “Vision based Tracking and Interpretation

of Human Leg Movement for Virtual Reality Applications”,

IEEE Trans. On Circuits and Systems for Video Technology,

Vol. 11, No. 1, 2001

[2] C. R. Wren, A. Azarbayejani, T. Darrell, A. Pentland,

"Pfinder: Real Time Tracking of Human Body", IEEE Trans.

on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7,

pp. 780-785, 1997

[3] D. M. Gavrila, “The visual analysis of human movement: a

survey”, Computer Vision and Image Understanding, pp. 82-

98, 1999.

[4] Immersion Corp., http://www.immersion.com

[5] iReality.com Inc., http://www.genreality.com

[6] J. Chung, N. Kim, G. J. Kim, and C. M. Park., "A Low Cost

Real-Time Motion Tracking System for VR Application",

International conference on Virtual Systems and MultiMedia,

2001.

[7] J. LaViola, "A Survey of Hand Posture and Gesture

Recognition Techniques and Technology", Technical Report

CS-99-11, Brown University, Department of Computer

Science, Providence RI, June, 1999.

[8] JesterTek Inc., http://www.jestertek.com

[9] R. Watson, “A Survey of Gesture Recognition Techniques”,

Technical Report TCD-CS-93-11, Department of Computer

Science, Trinity College, Dublin 2, 1993.

[10] Reality Fusion Inc., http://www.realityfusion.com

[11] Vivid Group, http://www.vividgroup.com

[12] W. T. Freeman, D. B. Anderson, P. A. Beardsley, C. N.

Dodge, M. Roth, C. D. Weissman, W. S. Yerazunis, H. Kage,

K. Kyuma, Y. Miyake, and K. Tanaka, “Computer Vision for

Interactive Computer Graphics”, IEEE Computer Graphics

and Applications, Vol. 18, No. 3, pp. 42-53, May-June 1998.

V ­ 500

