
A HIGHLY EFFICIENT PARALLEL ALGORITHM FOR H.264 VIDEO ENCODER

Zhuo Zhao, Ping Liang Senior Member IEEE

Department of Electrical Engineering
University of California, Riverside, CA, 92521, U.S.A

Email: {zhaozhuo, liang}@ee.ucr.edu

ABSTRACT
In this paper, a highly efficient parallel algorithm of H.264

encoder is proposed. This algorithm fully exploits all data
dependencies for maximal compression and the best recon-
structed quality. Furthermore, this new method achieves the
optimal compression at a frame rate that increases approxi-
mately linearly as the number of parallel processing elements
[1]. Both the encoding speed and compression efficiency are
improved compared to previous approaches. This paper also
gives the relation between the number of parallel processing
elements and the theoretical encoding time and the relation
between the number of processors and the number of concur-
rently processed frames. Our simulation results show that this
algorithm can also achieve the optimal encoding quality as a
sequential processing encoder provided by Joint Video Team
(JVT).

1. INTRODUCTION

H.264/AVC [2] developed by the JVT significantly outper-
forms previous standards in compression ratio due to many
new features including quarter-pel motion estimation (ME)
with variable block sizes and multiple reference frames, intra-
prediction, CAVLC, CABAC, in-loop deblocking filter and
more.

Compared with MPEG-4 Simple Profile, up to 50% bi-
trate reduction is achieved at the cost of more than four times
of computational complexity [3]. Therefore, hardware or soft-
ware acceleration, especially parallel structure, is a must for
real-time applications.

Multiple-processor and multiple-threading encoding sys-
tem have been used for real-time video encoding [4]. How-
ever, up to now, no satisfactory solution has been found that
can partition video data for parallel processing while at the
same time maximally exploit the temporal and spatial data
dependencies for optimal coding efficiency.

Parallel algorithms are discussed in many papers,e.g., [4]
[5] [6] [7] [8]. A single chip encoder for H.264 in [5] used
a four-stage macroblock pipeline architecture. Although sat-
isfactory R-D tradeoff is reported, it made approximations of
neighboring encoding information in finding the optimal cod-
ing mode of the current MB. Therefore, its coding result can

Fig. 1. Intra- & inter-frame data dependencies

only be sub-optimal. An H.264 encoder using the Intel hyper-
threading architecture is reported in [4]. It splits a frame
into several slices and these slices are processed by multiple
threads. However, these extra slices bring heavy overheads
because of the slice header and the impairments to data de-
pendencies among MBs. Y.K.Chen,et al. performed exper-
iments to find relations between bit-rate and the number of
slices in a picture [4]. In another word, the approach in [4]
sacrifices coding efficiency in exchange for parallel threading.
In [6], a frame is divided into many small partitions with over-
lapping areas and these partitions are processed concurrently.
Unfortunately, this kind of partition is not feasible for H.264,
because the encoder needs previous MVs in raster-scan order.

We will show in this paper that how our new method does
not suffer from the problems faced by prior art approaches.

The structure of this paper are as follows. Section 2 pro-
vides an overview of the data dependencies in H.264. Section
3 gives a detailed introduction for our data partition and task
assigning methods. Section 4 provides the software simula-
tion results and Section 5 is the conclusion and our future
work.

2. PRIMARY DATA DEPENDENCIES IN H.264

The reference software JM 9.0 for H.264 provided by JVT
adopts sequential processing of each macroblock (MB) and
creates data dependencies that makes parallel processing dif-
ficult. However, by exploring these data dependencies, the JM

V 489142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

encoders can produce the optimal bitstream in terms of coding
efficiency, therefore, the highest compression ratio. For easy
comparison with the JM, this paper only considers coding ef-
ficiency. We realize that optimal subjective quality may have
different requirements, however it is not dealt in this paper.

Our objective is to explore elements of the encoder that
can be processed in parallel and at the same time, maximally
exploit the temporal and spatial data dependencies for optimal
coding efficiency.

2.1. Predicted Motion Vector & Inter-prediction

In inter-prediction, predicted motion vector (PMV) defines
the search center of motion estimation. This variable is very
useful in maintaining continuity of the motion field. It is de-
termined by the MVs of its neighboring subblocks (MVA,MVB

and MVC) and the corresponding reference indexes [2], as
shown in Fig.1 (a). Only the difference (MV D) between the
final optimal motion vector (MV ′) and PMV will be en-
coded.

Similar to previous standards, H.264 also needs the recon-
structed images from encoded frames as reference to exploit
temporal redundancy. Thus, at least the co-located MB and its
eight neighboring MBs in the reference frames must be avail-
able before current MB can be encoded, as shown in Fig.1
(b).

2.2. Quarter-pel interpolation and deblock-filtering

In H.264, traditional half-pel accuracy prediction is extended
to quarter-pel. Before the reconstructed result of current MB
can be used as reference for its next frame’s coding, it must
be interpolated to get these pixel values in quarter-/half-pel
positions. This operation in the boundary area of current MB
needs 3 rows/columns of pixels from its neighboring MBs (A,
B, C, D, see Fig.1 (a)).

Also, in order to compensate the block artifacts brought
by block-based ME and transform. H.264 uses a adaptive
deblock-filter. The filter-strength factor is also determined by
the prediction mode and pixel values of neighboring blocks
[2]

2.3. 4 × 4 & 16 × 16 intra-prediction & mode decision

H.264 has 9 4 × 4 intra-predictions and 4 16 × 16 intra-
predictions. For detail, see [2]. As shown in Fig.2, the dark
pixels from neighboring blocks of current MB are needed for
intra-prediction.

2.4. Context-adaptive variable length coding (CAVLC)

CAVLC is another powerful tool which makes H.264 effi-
cient. The first VLC, coeff token, encodes both the total num-
ber of non-zero transform coefficients (TotalCoeffs) and the

Fig. 2. Intra-prediction data dependencies

Fig. 3. Concurrently processed MBs

number of trailing±1(T1). There are 4 choices of look-up ta-
ble to use for encoding coeff token, described as Num-VLC0,
Num-VLC1, Num-VLC2 and Num-FLC (3 variable-length
code tables and a fixedlength code). The choice of table de-
pends on the number of non-zero coefficients in upper and
left-hand previously coded blocks NU and NL.

3. DATA PARTITION AND TASK PRIORITY

3.1. Data partition

From section 2, we observe the following:
(1) MBs in different frames can be processed concurrently,
only if its necessary reconstructed MBs from reference frame
are all available.
(2) MBs from different MB rows in the same frame can also
be processed concurrently, only if its neighboring MBs in its
top MB row all have been encoded and reconstructed.

Fig.3 is an illustration of this observation. This simple but
powerful observation is the basis of our new data partition and
task scheduling method, hereafter referred to as Wavefront
Parallelization. In this example, three frames are concurrently
processed. The gray areas represent MBs which have been
encoded and checkered MBs are being encoded concurrently
now.

A distinguishing property of Wavefront Parallelization [1]
is that if there are sufficient numbers of processors and the
video sequence is long enough, Wavefront Parallelization can
achieve a constant frame rate regardless how large the video

V 490

Fig. 4. Processing units in a frame

Fig. 5. Theoretical processing time per frame for QCIF

format is, e.g., QCIF, CIF or HDTV720. Taking Fig.3 for in-
stance, the encoding process of a new frame can be started
as soon as the 2x2 MBs in the top-left corner of its previous
frame are all encoded, because this is the minimum require-
ment for motion search of inter-prediction. This means, with
the increase of frame number, the average encoding time for
a frame approaches to only 4 TMB (where TMB is the en-
coding time for a macroblock). The number of processor units
needed to achieve this is:

Pn = �frame size in MB/4�

In practice, we cannot have a large number of proces-
sor units. We will show that majority of the benefit can be
achieved with only a small number of processor units.

In Wavefront Parallelization, each frame is first partitioned
into MB rows as shown in Fig.4. This is because a MB cannot
be processed until its left neighbor in the same MB row is en-
coded. All MBs in the same MB row will be processed by the
same processor or thread to reduce data exchanges between
processors.

3.2. Task assigning and priorities

Fig.7 gives the task assigning timing diagram for the ideal
case (number of processors = Pn). Here, T = TMB. How-
ever, this requires 25 processors for QCIF to achieve the op-
timal encoding speed; 99 processors for CIF, and 900 for
HDTV720P. This is not practical.

Fig. 6. Number of concurrently processed frames (QCIF)

Fig. 7. Task assignment timing diagram

Fig.5 is our simulation result of the theoretical encoding
time of a video frame with QCIF format. The results for CIF,
HDTV720P are also similar. This figure shows the relation
between the number of processors (horizontal axis) and the
encoding time of a frame (vertical axis and with TMB as the
unit). As can be seen, most of the speedup benefit can be
achieved using a small number of processors.

If only a small portion of processors are used, not all the
checkered MBs in Fig.3 that are ready for processing can be
processed concurrently. Thus, priority based task scheduling
is necessary to guarantee that the processors can be fully uti-
lized.

Here we defined the priorities in two levels: the first is the
inter-frame level, and the second is the intra-frame level. The
priority of the inter-frame level is higher than the intra-frame
level. The inter-frame level priority means that in the video
source buffer, if several MBs belonging to different frames
are ready to be encoded concurrently, the MBs in the frame
with smaller frame number should be encoded first. The intra-
frame level priority means that if several MBs belonging to
different MB rows in the same frame are ready to be en-
coded concurrently, the MBs in the row with smaller row in-
dex should be encoded first.

4. SOFTWARE SIMULATION

Our wavefront simulator is developed using C language and
implemented in a PC with a P4 2.8GHz processor and a 512MB
memory. The simulation results are compared with those
from JM 9.0, a sequential encoding structure.

V 491

Table 1. Simulation Result for ”Grandma.yuv” (QCIF)
Avg enc time per frame SnrY SnrU SnrV # of bits Speed up

Wavefront simulator 273 ms 37.157 39.869 40.450 61464 3.17
JM 9.0 865 ms 37.157 39.869 40.450 61464 1

Table 2. Simulation Result for ”Paris.yuv” (CIF)
Avg enc time per frame SnrY SnrU SnrV # of bytes Speed up

Wavefront simulator 1272 ms 35.729 39.181 39.279 128419 3.08
JM 9.0 3914 ms 35.729 39.181 39.279 128419 1

In our software simulation of an encoder for H.264 base-
line profile, four processors are simulated. Some of the en-
coder parameters are: one reference frame, searching range
for ME: ±10, Hadamard transform is used for motion cost
estimation, full R-D optimization, CAVLC for entropy cod-
ing.

We also performed simulations to obtain the relationship
between the number of processors (horizontal axis) and the
number of concurrently processed frames (vertical axis) for
different video formats. Due to space limitation, only result
for QCIF is given in Fig.6.

In order to simplify the encoder, we choose to encode 2
frames simultaneously at the most. From Fig.6, we found that
4 processors are the upper limit.

The simulator collects the maximal encoding time among
every 4 concurrently processed MBs and the corresponding
time spent on data partition and communication. Some of the
simulation results are presented in Table.1 and Table.2. In
Table.1, we used ”Grandma.yuv” (QCIF) as video source, 50
frames are encoded as ”IPPP” structure. In Table.2, we used
”Paris.yuv” (CIF) as video source, 50 frames are encoded as
”IPPP” structure. Experiments show that a speedup of more
than 3 times is achieved and the encoding quality is the same
as JM 9.0.

5. CONCLUSION AND FUTURE WORK

This paper presents the new Wavefront Parallelization method
for H.264 encoder. Analysis and simulation results show that
it can achieve the optimal compression at a frame rate that in-
creases approximately linearly as the number of parallel pro-
cessing elements. To our knowledge, no prior art approach is
able to achieve this. We are investigating the memory and data
flow optimization to further improve its performance. Future
research include a multi-core SOC implementation and map-
ping to a multithread processor.

6. REFERENCES

[1] Z. Zhao and P. Liang, “A highly efficient parallel process-
ing system for h.264/avc real-time video encoder,” Pend-
ing US Patent Application 60/691,603.

[2] JVT, “Draft recommendation and final draft international
standard of joint video specification,” ITU-T Rec. H.264
and ISO/IEC 14496-10 AVC, May 2003.

[3] T-C. Chen, Y-W. Huang, and L-G. Chen, “Analysis and
design of macroblock pipelining for h.264/avc vlsi archi-
tecture,” in Proceedings of the 2004 International Sym-
posium on Circuits and Systems, May 2004, vol. 2, pp.
II–273–6.

[4] Y-K. Chen, S. Ge T. X, and G. M, “Towards efficient
multi-level threading of h.264 encoder on intel hyper-
threading architectures,” in 18th Int.Parallel and Dis-
tributed Processing Symposium, Apr 2004, p. 63.

[5] Y.-W. Huang, T.-C. Chen, C.-H. Tsai, C.-Y. Chen, T.-
W. Chen, C.-S. Chen, C.-F. Shen, S.-Y. Ma, T.-C. Wang,
B.-Y. Hsieh, H.-C. Fang, and L.-G. Chen, “A 1.3tops
h.264/avc single-chip encoder for hdtv applications,” in
IEEE Int.Conf.Solid-State Circuits, Feb 2005, pp. 128–
130.

[6] S.M. Akramulah, I. Ahmad, and M.L. Liou, “Paralleliza-
tion of mpeg-2 video encoder for parallel and distributed
computing systems,” in Proceedings of the 38th Midwest
Symposium on Circuits and Systems, Aug 1995, vol. 2,
pp. 834–837.

[7] P. Tiwari and E. Viscito, “A parallel mpeg-2 video en-
coder with look-ahead rate control,” in Int.Conf. Acous-
tics, Speech, and Signal Processing, May 1996, vol. 4,
pp. 1994–1997.

[8] N.H.C.Yung and K.-K. Leung, “Spatial and temporal
data parallelization of the h.261 video coding algorithm,”
IEEE Trans. Circuit Syst. Video Technol., vol. 11, no. 1,
pp. 91–104, Jan. 2001.

V 492

