
INDIVIDUAL OBJECT INTERACTION FOR CAMERA CONTROL AND MULTIMEDIA 
SYNCHRONIZATION 

 
Richard Y.D. Xu 

 
Faculty of Information Technology, University of 

Technology, Sydney, Australia 
richardx@it.uts.edu.au 

 

Jesse S. Jin 
 

School of Design, Communication & I.T 
The University of Newcastle, Australia 

jesse.jin@newcastle.edu.au 

 
ABSTRACT 

 
In recent times, most of the computer-vision assisted 
automatic camera control policies are based on human 
events, such as speaker position changes. In addition to 
these events, in this paper, we introduce a set of natural 
camera control and multimedia synchronization schemes 
based on individual object interaction. We present our 
methods in detail, including head-pose calculation and laser 
pointer guidance, which are used to estimate the region of 
interest (ROI) for both hand-held and object-at-distance. We 
explain, from our results, of how these set of approaches 
have achieved robustness, efficiency and unambiguous 
object interaction during real-time video shooting. 

 
1. INTRODUCTION 

 
Computer vision technologies have recently been applied to 
human-less camera control and automated multimedia-to-
video synchronization. These applications have made video 
presentation more professional and reduced labor cost. 
Many of these applications are applied, typically to real-
time e-learning [1]  [2]. In these systems, the camera control 
policies are mostly based on the presenter and other 
scenario-dependant events. For example, the authors in [2] 
have proposed to use blackboard writing region and 
teacher’s position changes to control the camera during 
lecture video-shooting. 

Several other systems have recognized the importance of 
associating the presenting objects with its camera control 
scheme. For example, in the system described by [3], the 
authors have applied primarily hand tracking techniques to 
control video shooting for desktop-based TV presentation. 
The video shooting policies in these works, however, do not 
recognize the presenting object itself. Therefore, the same 
video shooting policy is applied regardless which object 
presenter is currently interacting with.  

 
2. MOTIVATION AND CHALLENGES 

 
In our work, we aim to further improve the camera control  

  
Fig 1 (left) is the illustration of multimedia synchronization based 
on object detection. Fig. 2 (right) is the camera system hardware  

 
capability by associating a policy to each individual 
presenting object. As a consequence, video shooting rules 
can be customized based on presenter’s interaction with a 
particular object, such as variable close-up shooting time. 
Object recognition can also assist multimedia 
synchronization. This is illustrated in Fig.1, such that, when 
local system detects the presenter’s interaction with a pre-
trained “tool” object, then, the remote audiences are 
automatically informed of the tool’s detected region and its 
pre-authored multimedia is shown simultaneously.  

The hardware used in our work is based on our design of 
a portable robotic camera, shown in Fig.2. The system 
contains one static and one PTZ camera placed closed 
together. This robotic system requires one standard PC for 
its computer vision processing. The advantage of our design 
in comparison with a multi-processor and fixture-to-room 
camera system [1][2][3] is stated in [4]. 

At the moment, we are supporting two presenter 
interactions. They are depicted in Fig 3. For hand-held 
objects, shown in Fig 3.a, the presenter holds an object one 
at the time while he/she is presenting. In this interaction, the 
object is brought close to the static camera, and usually 
appears sufficiently large for recognition. For objects not 
easily (or feasible) to pickup by the presenter or at a 
distance to the camera, the presenter can specify its position 
by drawing a virtual ellipse using a laser pointer around it to 
indicate its ROI. This is shown in Fig 3.b.  

2.1. Challenges to apply SIFT based object matching  

The object detention algorithm used in our work is based on 
Scale Invariant Feature Transform (SIFT) [5], a popular 
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(a)  (b) 

 
Fig 3. (a) is presenting a hand-held object, (b) is presenter drawing 

a virtual ellipse around a remote object using laser pointer 
 
local invariant feature matching algorithm used in image 
database retrieval. 

When we apply SIFT to real-time video object 
recognition, we must improve its robustness and efficiency. 

For robustness, we have applied our novel distance ratio 
test under reference scale approximation to further improve 
SIFT’s robustness against variations between training and 
video objects in affine transformations and illumination 
changes. This is discussed in detailed [6].  

The efficiency issue arises, as SIFT process is too 
computational for real-time video object matching if SIFT is 
generated on every video frame using single PC processing 
(recall that our robotic camera uses only one PC). 
Therefore, in order to achieve real-time efficiency, we have 
applied a head-pose estimation to determine the most likely 
ROI containing the presenting object in an effort to reduce 
SIFT computation. This will be discussed in Section 3.  

On the other hand, the distant-object specified by laser 
pointer, may be too small to generate sufficient SIFT 
features for matching. Therefore, we are performing 
matching after obtaining PTZ camera’s close-up view of the 
region. Its technical overview will be given in Section 4.  
 

3. HAND-HELD OBJECT RECOGNITION 
 
In our work, we have used presenter’s head-pose to estimate 
ROI before SIFT computation on hand-held object. To 
validate this method’s appropriateness, the following 
observations were made from watching several presenters 
presenting hand-held objects in front of a camera. 

Table 1:  Head pose with respect to object presentation 

 Observed head pose Likelihood
O1 Presenter faces the camera while presenting True most 

of times 
O2 Presenter’s face is usually not occluded 

before the camera 
Almost true 

always  
O3 The presenter looks into the direction of the 

presenting object for a short period of time 
at least once during presenting  

True most 
of the times

O4 The distance between presenter’s face to the 
hand-held object is usually within three 

times the width of the face horizontally and 
twice height of the face vertically 

True most 
of the times  

In our experiments, we have also tested other methods 
for ROI calculations, including hand tracking and 
background subtraction. We have found that the head pose 
is a superior approach.  

Compared with the hand-tracking method, the 
presenter’s face is usually not occluded at all during 
presentation (Observation 2). The face motion is much 
slower and more linear than that of the hands. Compared 
with background subtraction (we assume foreground being 
the presenter and the object), pose orientation results 
smaller ROI (56% smaller on average during our 
experiment, when presenter moves closer to the camera.) 
than does background subtraction.  

3.1. Pose orientated hand-held object recognition  

Our algorithm illustrated in Fig 4, is used to detect newly 
presented object and tracking of the recognized ones. We 
notice that SIFT computation is reduced significantly from 
every frame to be interaction-driven instead. 

 
Pose-driven object recognition routine: 

INITIALIZE:  Frontal Face detection                
WHILE (frontal face AND eyes are detected) 
         Compute face orientation 
         WHILE Presenter is NOT looking directly in front AND  
                      NO object is being recognized 
               1. Compute ROI candidates from detected face size 
               2. Calculate best ROI candidate according to face orientation  
               IF (Presenter is looking at the same ROI continuously for a  
                     short period of time (observation 3) ) { 
                      Perform SIFT-based Recognition } 
               IF (Object recognized) { 
                      Update object colour distribution 
                      Call Object Tracking sub routine } 
          END WHILE 
END WHILE  

Object tracking subroutine:  
WHILE  
       IF (pdf similarity measure is higher than threshold) 
             Tracking object 
      ELSE  
             Restart pose-driven object recognition routine 
END WHILE      
 

Fig 4 is the pseudo code for pose-oriented SIFT ROI estimation 

3.2. ROI candidate estimations 

By Observation 4 in Table 1, we have stated that hand-
held object is usually close to presenter’s face during 
presentation. Since face detection is a precursor in pose 
calculation, therefore, at no additional cost, this information 
is also used to determine a set of ROI candidates. When 
static camera is set to 320 * 240 frames, four ROIs were 
drawn, shown in Fig 5.  

3.3 Pose calculation 

There are many researches on head pose estimation. Most of 
these approaches require many feature points on the face 
[7], which are too computational for our purpose, as pose 
calculation only serves as an overhead task.  
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Fig. 5 is the two of the four overlapping ROI candidates from 
detected face size determined from pose orientation 

 
Our pose orientation is based on a modified approach to [8]. 
The method only requires two points: the centroid of the 
head and the midpoint of the eyes, to determine  (pitch 
angle),  (yaw angle) and  (roll angle): 
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To determine the centroid of the head required in [8], we 
have applied face detection algorithm using Haar-like 
feature algorithm by [9]. The result from face detection 
outputs a rough rectangular region for the head. We have 
then used combination of edge detection (Sobel filter) and 
Support Vector Machine (SVM) colour training to obtain a 
rough head shape. An ellipse fitting based on this 
information is used to determine the head shape. 

3.3 Object tracking 

To avoid object re-detection, once the object is detected, the 
system is then switched to a computationally efficient object 
tracking method by color features [10]. The tracking 
continues until the object is lost. 

3.4 Results on hand held object recognition 

By applying our pose-driven method, we have limited the 
object matching process to where and when interaction 
occurs. In Fig 6, ROI is determined from the pose analysis, 
SIFT features in each ROI is calculated.  

After SIFT features are generated in its corresponding 
ROI, it is then matched with SIFT features stored in the 
training image database. The results are shown in Fig 7. 

3.6. Efficiency improvement 

We have compared execution time using our pose-driven 
ROI preprocessing with SIFT generation on each video 
frame. The experiments were performed using a testing PC 
(P-M 1.5, 512 RAM) on 320 *240 resolution video captures 
with moderate texture in the background. The results are 
shown in Fig 8.   

 

Fig 6. Calculation of SIFT within the ROI. 

 

Fig 7.  Pose-driven hand-held object recognition results, the blue 
line and pink corner is the calculated object pose determined from 

the matched SIFT key points (shown in blue circle) 
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Fig. 8 Execution time comparison on object recognition event 

The top figure in Fig 8 is the execution time using our 
method. Its initial computation, averaged around 160ms is 
due to presenter’s face detection. Once face is identified, the 
system switches to a computational efficient face tracking 
algorithms, where pose analysis is then calculated in nearby 
pixels of face region. The average time for tracking and 
pose calculation (including eye detection) is about 50ms. 
The bottom figure is the execution using SIFT computation 
on every video frame, where this method averaged about 
1000ms each computation. By comparisons, our method is 
much computational efficient.  
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(a)   (b) 

Fig. 9 Distant-object recognition (a) detected laser pointer virtual 
ellipse, the white dot is the last detected point. (b) PTZ camera 

view after zoom-in, showing calculated object pose and matched 
SIFT keypoint 

 
4. DISTANT-OBJECT RECOGNITION 

 
The result of distant-object recognition is shown in Fig 9. 
The most technical challenging tasks are the robust laser 
pointer detection and automatic PTZ camera control: 

4.1 Robust laser pointer detection 

Robust laser pointer detection is not as trivial as it looks. 
The most challenging task comes from a so-called CCD 
clipping phenomenon. This is because most digital camera’s 
CCD sensors are only capable of capturing light with a 
maximum intensity close to white. Therefore, when a red 
laser dot is project onto a white surface, the amount of 
increase in camera’s intensity is not significant. Hence 
simple color thresholding method is unable to achieve 
robustness. In addition, there are background noises, such as 
reflection of metallic surfaces causing false detection. 

There are a few approaches proposed to combat this 
problem[11].  In our work, we have used our own 
spatiotemporal training, where during training, we record 
the maximum integral image intensity changes from a 
training region.  The result can then be modeled using bi-
modal Gaussian Mixture Model (GMM), separating noise 
from the true laser pointer illumination, shown in Fig10. 

 
Fig. 10 Spatiotemporal features during laser pointer training: left is 
the histogram; right is the corresponding bi-modal GMM fittings. 
 
4.2 PTZ camera movement 
 
The PTZ camera movement control is detailed in [6]. In essence, 
the control algorithm is based on tracking the laser pointer 
specified region, while PTZ camera is performing self centering, 
when self-centering completes, the PTZ camera then performs 
zoom-in operation. The tracking is based on optical flow: 

 
Fig 11 PTZ camera self-centering by tracking optical flow, until 
specified region (white) appears at centre of camera view (blue). 

5. DISCUSSIONS 
 

In this paper, we have presented a set of technical 
implementations in which SIFT-based object matching is 
used for camera control and multimedia synchronization. 
We have shown our motivation, and demonstrated a set of 
methods; including head pose estimation, robust laser 
pointer detection and PTZ camera control. The combined 
results are used together to achieve accurate ROI estimation 
for both hand-held and distant-object interactions. 

During our experiment, the head pose has shown 90% 
accuracy rate in ROI estimation, while laser pointer 
specified region has accuracy rate in excess of 95%. Our 
future works have also included the recognition of 
additional presenter-object interactions.  
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