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ABSTRACT

We propose a new method for watermarking of 3D surface
mesh. After irregular wavelet analysis, the watermark is
embedded in the scale coefficients. We modify the mean
of the distribution of the vertex norm of the approximation
mesh in order to obtain blind scheme which does not require
the original mesh for detection. Experimental results show
the effectiveness of the proposed algorithm both in terms
of invisibility and robustness against simplification and pro-
gressive lossy compression.

1. INTRODUCTION

In these last years digital watermarking has allowed great
possibility as a DRM (Digital Right Management) techni-
que. Unlike traditional data protection techniques such as
encryption, digital watermarking does not restrict access to
the host data, but ensures the hidden data to remain inviolate
and recoverable. Watermarking provides a mechanism for
copyright protection by embedding information, so-called
watermark, into host data [1].

In general, there are two different classes according to
the application. Fragile and semi-fragile watermarking is
used for checking content authenticity or integrity and high-
light the region that have been tampered with. In copyright
protection, the watermark should be perceptually invisible
and robust against various copyright attacks. Robust water-
marking has been investigated for this [2–5]. The water-
marking system also can be classified into informed detect-
ion and blind detection according to detection procedure. It
has been known that blind detection schemes are less robust
than informed schemes but they are more useful for most
applications as they do not require the host signal for their
detection procedure [1].

Kanai et al. [2] proposed non-blind watermarking by
modifying the wavelet coefficients from semi-regular wave-
let analysis. Uccheddu et al. [3] extended [2] to blind water-
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marking. The downside of two methods is that only a semi-
regular mesh could be available because of the limitation
of the 4:1 subdivision connectivity in Lounsbery’s scheme
[6]. They can embed the watermark into an irregular mesh
by using remeshing that converts an irregular mesh into a
semi-regular one. However, the remeshed model can not be
seen as the original, as it corresponds to a different sam-
pling of the underlying 3D surface: the mesh connectivity
is different from the original.

In our prior work [4], we proposed spread-spectrum ap-
proach [1] for both semi-regular and irregular meshes by us-
ing wavelet transform. We used the irregular wavelet mul-
tiresolution analysis [7] to solve the subdivision connectiv-
ity problem in [2, 3]. Although irregular wavelet analysis
has a good performance for both semi-regular and irregular
meshes, there still exists an open question for the watermar-
king, so-called, global synchronization of the mesh. Unlike
discrete wavelet transform of 2D images, the wavelet coe-
fficients of 3D meshes depend on the seed-triangle group
merged during connectivity graph simplification. This arti-
fact results from both irregular sampling and unusual scan-
ning of the 3D surface. In addition, although the lossless re-
construction of integer coordinates meshes is possible and
the reconstructed mesh is exact in terms of geometry, the
original vertex indices are lost when processing with the ir-
regular wavelet analysis [7]. Even regular wavelet analysis
can not avoid the global synchronization after reconstruc-
tion. This is not a problem for the application of visualiza-
tion, but it is critical for the applications such as copyright
protection or content authentication. We solved the problem
by using the reordering algorithm before and after the wave-
let transform, and we could obtain the exact index order of
the vertices and faces. The method does not use the original
mesh during extraction and can embed over than 315 bits
into wavelet coefficients norms on Stanford Bunny model.
It was robust against various geometrical attacks such as ad-
ditive noise, smoothing, affine transform, and distortion-less
topological attacks such as random reordering.

Previous works [2–4] which are based on wavelet trans-
form have a weakness against topological attacks. It is cau-
sed by the limitation of subdivision connectivity of semi-
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regular wavelet analysis or by the synchronization of wave-
let coefficients.

In this paper, we extend our previous method [4] to be
robust against topological attacks. In sharp contrast with
our previous paper, we do not embed the watermark into
the wavelets coefficients but into the scale coefficients (e.g.
the approximated mesh) which is less sensitive to topologi-
cal attacks. We modify the mean of the distribution of ver-
tex norms of the approximation mesh. Our method adjusts
the distribution by given threshold according to binary wa-
termark in order to obtain a blind scheme which does not
require the original mesh for detection.

The rest of this paper is organized as follows. In Section
2, we describe briefly irregular wavelet transform. Water-
marking embedding and extraction are presented in Section
3. Simulation results show the effectiveness of our proposal
in Section 4. Finally, we draw a conclusion.

2. BACKGROUND

Irregular wavelet analysis scheme [7] simplifies the original
mesh by reversing an irregular subdivision scheme. The
simplification is repeated until the resulting mesh cannot be
simplified anymore. For meshes homeomorphic to a sphere,
the simplest mesh is a tetrahedron. We obtain a hierarchy of
meshes from the simplest one M0, called base mesh, to the
original mesh MJ . Following [7], the wavelet decomposi-
tion can be applied to the geometry of the different meshes
which are linked by the following matrix relations:

Cj−1 = AjCj (1)

Dj−1 = BjCj (2)

Cj = P jCj−1 + QjDj−1 (3)

where Cj is the vj
×3 matrix representing the coordinates of

the scale coefficients at the resolution level j, vj is the num-
ber of vertices for each mesh M j . Dj−1 is the (vj

−vj−1)×
3 matrix of the wavelet coefficients at level j. Aj and Bj

are the analysis filters, P j and Qj are the synthesis filters.
Valette’s scheme [7] attempt to inverse the connectivity sim-
plification to 1:4 subdivision as much as possible. This is for
semi-regular regions in the irregular input meshes. If 4:1
simplification is not possible, it will be merged in groups of
three or two faces, or leave some faces unchanged. Edge
flips are performed when needed. In addition, starting from
the Lazy wavelet filter-bank (Eq. (1) - (3)) following [6] we
build new filters Aj , Qj by the Lifting scheme in order to
make the wavelet functions more orthogonal to the scaling
functions in the 1-ring.

Fig. 1. Watermark embedding

Fig. 2. Watermark extraction for (a) previous approach [4]
(b) new approach

3. PROPOSED WATERMARKING METHOD

3.1. Watermark Embedding

After we compute forward wavelet transform of the mesh,
we obtain the scale coefficient vector Cj−1 from Eq. (1) as
follows,

Cj−1 = [ c0, c1, . . . , cI−1 ]t (4)

where, ci = [xi yi zi]
t and I is the number of scale coe-

fficients. In the following we omit the resolution level j − 1
for the sake of notational simplicity.

We convert the Cartesian coordinates of ci to spherical
coordinates [ρi θi φi], where ρi denotes vertex norm of ci.
Then, the probability distribution is divided into N distinct
bins with equal range, according to their magnitude. Each
bin is used independently to hide one bit of watermark. The
maximum ρmax and the minimum ρmin are calculated prior
to build N bins from the vertex norms. After, vertex norms
belonging to the n-th bin are mapped into the normalized
range of [0, 1]. The attached random variable is now noted
xn.

The next step of the proposed watermark embedding is
to shift the mean value of each bin via transforming vertex
norms by the histogram mapping function (yn = xkn

n for
0 < kn < ∞ and kn ∈ R). We use a binary bit sequence
as the watermark (ωn ∈ ±1). The distribution moves to the
left (ωn = −1) or to the right(ωn = +1) by given threshold.
The threshold is determined as the mean of the uniform dis-
tribution in the range of [0,1]. Then the mean of each bin,
µ̃′

n, is changed by

µ̃′

n =
1

2
+ α ωn (5)
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, where α (0 < α < 1

2
) is the strength factor that can control

the robustness and the transparency of watermark. The ex-
act parameter kn can be found by computing the expectation
of n-th bin and it results:

kn =
1 − 2 α ωn

1 + 2 α ωn

(6)

Note that kn exists in the range of ]0, 1[ when the wa-
termark bit is +1, and kn does in the range of ]1,∞[ when
watermark bit is −1. In reality, the vertex norm distribu-
tion in each bin is not continuous nor uniform. Then the
parameter kn cannot be calculated by Eq. 6. To overcome
this difficulty we use an iterative approach by decreasing
kn when the watermark bit is +1 or by increasing kn when
the watermark bit is −1. Note that the yn = xkn mapping
prevent interference between bins. All transformed vertex
norms in each bin are mapped onto the original range and
after shifting the distribution.

Finally, the watermark embedding process is completed
by combining all of the bins and converting the spherical
coordinates to Cartesian coordinates.

3.2. Watermark Extraction

In our previous work [4], we extract the watermark after re-
ordering and wavelet transform as shown in Fig. 2(a). We
propose a new method to extract the watermark directly
from the attacked mesh as in Fig. 2(b).

First Cartesian coordinates of the attacked mesh are con-
verted to spherical coordinates. After finding the maximum
and minimum vertex norms, the vertex norms are classified
into N bins and mapped onto the normalized range of [0, 1].
Then, the mean of each bin, µ̃′′

n is calculated and compared
to the threshold, 1

2
. The watermark hidden in the n-th bin,

ω′′

n, is extracted by means of

ω′′

n =

{
+1, if µ̃′′

n > 1

2

−1, if µ̃′′

n < 1

2

(7)

Note that the watermark detection process does not require
the original meshes.

4. EXPERIMENTAL RESULTS

In this section, we demonstrate the experimental results to
show the effectiveness of our proposal. We use Stanford
Bunny (34,834 vertices and 69,451 faces) and Head (10,196
vertices, 20,261 faces). We embedded the watermark on
CJ−1. A watermark of 64 bits is embedded into a Bunny
model and a watermark of 32 bits is embedded into a Head
model. These watermark lengths are no longer than our pre-
vious work [4], but note that we do not use the original mesh
during extraction. The resulting models are presented in
Fig. 3. The strength factors are 0.07 for Bunny and 0.055

(a) Original Bunny (b) Watermarked Bunny

(c) Original Head (d) Watermarked Head

Fig. 3. Test models

for Head model. We could recover the exact message with-
out an attack.

Fig. 4 depicts the robustness results as linear correlation
between the original message and the designated one. Note
that, we only considered simplification and lossy compres-
sion in this paper. WaveMesh [8] was applied according to
different quantization steps (bits/coordinate) for lossy com-
pression in Fig. 4(a).

Simplification in Fig. 4(b) is done by using quadric error
metrics [9]. Fig. 4(c) yields the result from combined attack
of quantization and simplification (63% for Bunny, 75% for
Head) by WaveMesh [8].

In Fig. 5, Our method was analyzed by ROC (Receiver
Operating Characteristic) curve that represents the relation
between probability of false rejections Pfr and probability
of false alarms Pfa varying the decision threshold to declare
the watermark present. The probability density functions
for Pfr and Pfa were measured experimentally with 100
correct and 100 wrong keys, and approximated to Gaussian
distribution. We used the Bunny model as used in Fig. 4(c).
EER(Equal Error Rate) is also indicated in this figure.

Since the contour of the probability distribution is not
altered a lot after uniform quantization and simplification,
we can fairly extract the watermark.

5. CONCLUSION

A robust blind watermarking method has been proposed in
this paper. We embed the watermark into the scale coeffi-
cients from the approximated mesh by the irregular wave-
let analysis. We modify the mean of the distribution of the
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(a) Quantization

(b) Simplification

(c) Quantization + Simplification

Fig. 4. Robustness against attacks

approximation mesh in order to diminish sensitivity from
topological attacks. All the vertex norms in each bin are
modified by a histogram mapping function to prevent inter-
ference between the modified bins. Experimental results in-
dicate the pertinence of the proposed algorithm in copyright
protection of 3D models.
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