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ABSTRACT

In order to realize truly immersive and stable telepresence and
teleaction over the Internet it is necessary to keep delay, data rate,
and packet rate of haptic data streams as low as possible. In addi-
tion, the compression scheme for haptic data, which is necessary to
achieve those goals, must be fast enough to work on a sample by
sample basis to not add further delay. This paper presents an ap-
proach that reduces haptic data traffic in networked telepresence and
teleaction systems to a small fraction of the original rate without im-
pairing performance by using fast Kalman filters on the input signals
combined with model based prediction of haptic signals. Our ap-
proach reduces the number of transmitted packets to 9.8% (velocity)
and 6.2% (force) of the original rate without impairing immersive-
ness.

1. INTRODUCTION

In a telepresence and teleaction (TPTA) system a teleoperator (TOP),
either a robot equipped with different kinds of sensors and actuators
or a virtual simulation thereof, is controlled by an operator (OP), a
human being using a human system interface (HSI). The HSI records
the position and velocity input by the OP and reflects sensor informa-
tion acquired by the TOP using displays for visual, auditory and hap-
tic data. While the transmission of video and audio data is mostly un-
problematic, haptic data (position/velocity and force/torque) poses a
couple of additional challenges. The OP commands the desired TOP
position/velocity using the HSI whereas the contact force at the TOP
is sent back to the OP side. Therefore a global control loop is closed
over the communication system. Because delays in the system may
quickly destabilize it [1], the system has to be stabilized by means
of sophisticated control measures [2].

Nowadays, the ubiquitous Internet is the medium of choice for
the transmission of multimodal data. Unfortunately, high rate real-
time data transmission is still a problem and varying delays mostly
due to congestions in routers appear as well as packet loss. In order
to still use the Internet for TPTA communication makes it impera-
tive to use special data compression and transmission strategies for
haptic data streams.

TPTA systems like the one described in [3] normally run update
rates of 500–1000 Hz for the local control loops in order to achieve
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the desired tracking accuracy. Because of increasing stability prob-
lems with introduced delay every set of sampled sensor values of a
sampling instance has to be transmitted in an individual packet lead-
ing to high packet rates (500–1000 packets per second) as well as a
poor header to payload ratio because haptic data packets are usually
very small depending on the number of degrees of freedom (DoFs) of
the system and the sampling resolution. Because of these particular
characteristics of packet based transmission of haptic data streams,
the only effective way to reduce haptic data traffic is to reduce the
rate of which packets are sent.

The Kalman pre-filtering step proposed in this paper enhances
the performance of the methods described in [4] and [5] consider-
ably by removing the noise from haptic input signals and therefore
making signal prediction much easier and more accurate.

The remainder of this paper is organized as follows. In Section
2 we briefly present previous work on this topic. Section 3 deals
with the proposed Kalman pre-filtering of input signals followed by
the description of the psychophysical experiment in Section 4 along
with its results in Section 5. Section 6 concludes this paper.

2. PREVIOUS WORK

In [4] we presented a perception-based deadband transmission ap-
proach to reduce the packet rate in TPTA systems. This deadband
approach is based on Weber’s Law of psychophysics which states
that a stimulus has to change for more than a constant percentage
in order to be perceivable by human beings [6, 7]. Consequently,
data packets are only transmitted when the change of the transmitted
stimulus is larger than a given deadband in comparison to the pre-
viously transmitted stimulus. This approach leads to a reduction of
packet rates between 75% and 90% but is only applicable for 1-DoF
devices.

Because of this major disadvantage we extended the deadband
approach to 3-DoF applications. This extension is quite straight for-
ward. A 3-dimensional vector of haptic data (mostly velocity or
force) is transmitted to the receiver. If the newly sampled vector
lies within a spherical deadzone around the tip of the previously sent
vector, the new vector is discarded. Only if it lies outside the dead-
zone, the new vector is sent and used as the new reference vector.
The size of the deadzone depends on the chosen deadband percent-
age. This approach reaches almost the same efficiency as the 1-DoF
approach.

In [5] we improve this scheme by introducing a model based
signal prediction on both sides of the system. Those predictors (in
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case of this paper linear predictors [LP]) are fed with the same input
data on both sides and are therefore always running in parallel. They
predict future sample values based on previous ones. Again, a packet
carrying new sample information is only sent, if the actual sample
value differs by more than the deadband value from the predicted
value. This approach leads to an additional 20% to 45% reduction of
packet rate in comparison to the 3-DoF approach mentioned before.

3. KALMAN FILTERING OF INPUT SIGNALS

Our investigations on typical sensor signals in TPTA systems and
predicted signals have shown that prediction of the signals could be
much more accurate if there was less noise in the sensor data. Most
noise can be observed on velocity signals, which are used for the
communication from OP to TOP. The reason for this is simple: Sen-
sors in haptic input/output devices are position sensors and velocity
is derived from the position data by differentiation. This differen-
tiation heavily amplifies the noise which is already in the position
signals. Force signals, which are transmitted from TOP to OP are
less noisy because force is recorded from the sensors directly. This
is one of the reasons why the compression of force signals works
significantly better than the compression of velocity signals in the
three methods reviewed in Section 2.

To denoise the input signal in order to be able to predict future
samples more accurately and therefore increase compression perfor-
mance we introduce a fast Kalman filter. A snapshot of the appli-
cation of this filter in one of our experiments can be seen in Figure
1.
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Fig. 1. Velocity signal before and after Kalman pre-filtering.

3.1. Kalman Filter

To be computationally efficient we need a filter which has a low com-
plexity and can be applied to a signal sample by sample. The Kalman
filter [8] in a simplified form does exactly fulfill those needs. We use
a scalar Kalman filter for every DoF separately to keep computa-
tional complexity low. This is necessary, because filtering has to take
place in real time at sampling rates of 1000Hz and many other algo-
rithms (haptic rendering, deadband transmission, prediction models
etc.) have to be executed in the one millisecond between samples.

A discrete one dimensional signal of sample values xk (the real
signal without noise) shall be approximated by an estimated signal

x̂k. Therefore measurements zk are taken every sampling instant
and the following algorithm is applied:

1. Calculating the innovation I , which is the difference between
the measurement and the estimation:

I = zk − x̂k−1

2. Calculating the variance of the innovation I:

S = P + R

where P is the variance of the prediction error (calculated be-
low) and R, the variance of the measurement noise, which is
also the only parameter we use to adjust the filter characteris-
tics.

3. After that we calculate the gain K for the estimation step:

K =
P

S

4. Then finally the estimation:

x̂k = x̂k−1 + K · I

5. and the calculation of the new variance of the prediction error:

P = P + Q − K · P
where Q is the variance of the process noise. We set it to 1 to
have only one filter parameter.

Steps 1 through 5 are executed every sampling instant and the fil-
tered signal values x̂k are taken as input signals instead of the noisy
measurements.

The filter characteristics can be adjusted by changing the pa-
rameter R, the variance of the measurement noise, which weighs
the measured values against the predicted value which in our filter is
simply holding the last value. A low R leads to a high confidence
that measurements are correct, therefore measurements are weighted
more for the filter output than the prediction and vice versa. The ex-
ample in Figure 1 was recorded using R = 100, which was chosen
as a good trade off between noise reduction and system response
during the preparation phase of the experiment. This was also the
value which was used for the velocity signal in the psychophysical
experiment in Section 4.

3.2. System Design

The signal processing steps in the presented system can be seen in
Figure 2.

The sampled velocity values at the HSI are first filtered by the
proposed Kalman filter with R = 100. The resulting denoised signal
is fed into the deadband controller. This deadband controller detects
whether the difference of the predicted signal from the prediction
model and the Kalman filtered input signal is bigger than the dead-
band value. If this is the case, a new packet is generated and sent to
the TOP side while at the same time the prediction model is updated
with the same value. So in consequence the prediction models on
both sides run completely symmatrically. In our case a simple first
order prediction is used, where future sample values are extrapolated
linearly from the last two transmitted sample values (like in [5]). On
the TOP side, the system keeps getting new values from the predic-
tion model which is constantly updated by the deadband data from
the OP side.
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Fig. 2. The system signal flow design.

In the direction from TOP to OP signals are handled similarly
with the difference that the Kalman filtering only needs to have R =
5 (also empirically chosen as a good trade off) because force signals
in our case have much less noise than the velocity signals. In other
systems the R parameter has of course to be adapted to the noise
level of the respective sensors and the desired frequency response.
Filtering with higher R leads to a lower cut-off frequency. In conse-
quence this gives us the opportunity to decide the trade-off between
compression efficiency and frequency response.

4. PSYCHOPHYSICAL EXPERIMENT

In order to prove the efficiency of the proposed algorithm a psy-
chophysical experiment has been conducted.

4.1. Setup

The conducted experiment consists of a haptic teleinteraction task
with a virtual environment. The hardware and software setup is
the following: On the OP side the haptic display device SensAble
PHANTOM Omni serves as the HSI. Over a 100Mbit/s Ethernet
LAN connection this OP side transmits current position and velocity
samples to a simulated haptic environment on another machine in
the same LAN and receives force data in return to be displayed to
the OP along with a 3D view of the scene rendered in real time.

The task itself is touching and feeling a virtual scene which is
simulated by the TOP side. The only object in the virtual envi-
ronment in this experiment is a sphere in the middle of the virtual
workspace. This sphere is of course registered with the sphere in the
graphical display on the OP side so that contacts between the cur-
sor and the sphere in the graphical display exactly correspond with
contacts in the virtual environment. The virtual sphere is fixed at the
center of the workspace and can be touched with the virtual cursor.
The resulting force during the interaction is calculated by a simple
Hooke’s Law

F = u · d
where u is the stiffness of the sphere and d the amount of penetration
into the sphere body. F is the resulting force’s magnitude. The
direction of the force always points from the sphere’s center to the

actual cursor position. So in this case it can be calculated as

F =
x − s

|x − s| · (r − |x − s|) · u

where the resulting force vector F is calculated from the current po-
sition of the user x, the sphere’s position in space s, the sphere’s
radius r, and the sphere’s stiffness u.

The haptic feedback is generated as follows. The OP uses the
HSI to command the desired position in space. This position in-
formation is transformed into velocity information by differentiation
and sent to the TOP after being processed by the transmission system
(see Figure 2. Despite filter-, deadband- and prediction algorithms
are only used on the velocity signal, current position information is
sent along in order to be able to compensate for position errors re-
sulting from the velocity deadband. The position signal coming from
position sensors is noisy and so is the velocity signal. On the TOP
side the received signal is incorporated into the prediction model and
the output force is calculated by the haptic rendering. The resulting
force signal has no measurement noise but gets distorted by rapid
position corrections caused by the prediction model and the velocity
deadband and is therefore processed in the same way as the veloc-
ity signal before being sent to the op side. Of course, in real TPTA
systems we get noise from the force sensors as well.

4.2. Subjects

Five test subjects underwent the procedure described in 4.3. One was
female, four were male. All had normal sensory motor capabilities
and were 25 to 31 of age.

4.3. Procedure

Two sets of evaluations were made with the goal to estimate a per-
ception threshold value for the deadzone in the following three cases:

1. Deadband is applied on velocity values

2. Deadband is applied on force values

To achieve that, the subjects are first presented with a system
completely without deadband to get used to handling the device and
to learn to know what it feels like. Then a heavily distorted sys-
tem is shown to the subjects in which they can clearly feel the kind
of distortion which is introduced into the system by the deadzone
transmission. This phase is called the familiarization phase.

After the subjects feel familiar with the system and the kind of
distortion they are presented with, three test runs are conducted each
consisting of twelve 30-second intervals (24 intervals in 12 minutes
total). In the first run with twelve intervals the deadband is only used
for the velocity values which are sent from the OP to the TOP. In the
second run the deadband is only used on force values which are sent
from TOP to OP. During the tests, the subjects wore a headphone
which played loud music so they had to concentrate on their haptic
sensations.

The 12 intervals of each run use a randomly chosen order of
the following possible deadband values: 0%, 2.5%, 5%, 7.5%, 10%,
12.5%, 15%, 20%, 25%, 30%, 35%, and 40%. The subjects did nei-
ther know which value was currently being used nor did they know
in which direction the deadband was applied.

After every interval the subject was asked to give a rating for the
just perceived interval. If it felt perfectly like the undistorted signal
from the familiarization phase, they should give a rating of 10 points.
If it feels just as bad as the heavily distorted signal from the famil-
iarization phase, they should give a rating of 1 point. The ratings in
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between can be chosen according to the quality of the signal where
of course higher ratings signify a better quality.

5. EXPERIMENTAL RESULTS

The ratings given by the test subjects can be seen in Figure 3. We can
see an almost linear decrease in the ratings for both types of data with
increasing deadband value. We say that values of 7 and higher repre-
sent a good feeling of immersion with the system. Consequently, we
can say, that 10% deadband for both velocity and force should not
be exceeded to not sacrifice immersion, but lower deadband values
are always desirable.
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Fig. 3. The average ratings given by the test subjects.

Rates of generated packets can be seen in Figure 4. Compared
to the results from [5], where no Kalman pre-filtering was applied,
we can observe a strong decrease in velocity packet rates, espe-
cially with small deadband values. This is exactly the benefit the
Kalman pre-filtering was supposed to give. This has two main rea-
sons. Firstly, during motion phases with small velocities the velocity
noise constantly triggered the deadband. With less noise in the sig-
nal this happens considerably less often. Secondly, less noise makes
it easier to estimate and predict signal slopes.

For force packet rates the improvements are not as significant
as in the velocity case. The reason for this is the fact that we have
considerably lower noise levels on the force signal to begin with.
The Kalman pre-filtering step is therefore not as efficient here as
for velocity signals. Still we can observe a significant improvement
(65%) in packet rate at 2.5% deadband in comparison to the LP case.
This means almost 94% packet rate reduction in comparison to the
original rate with only a minimal 2.5% deadband applied.

Finally we can state that the proposed Kalman pre-filtering step
for prediction based deadband transmission of 3D haptic data works
well for velocity and force data. At a combination of 7.5% deadband
for velocity and 2.5% deadband for force we achieve a reduction of
packet rate to 9.8% of the original rate for velocity and 6.2% for
force with barely noticeable influence on immersiveness.

6. DISCUSSION AND FUTURE WORK

The Kalman pre-filtering step proposed in this paper improves packet
rate reduction in TPTA systems considerably. Despite the example
application being relatively simple it still gives an impression how
the scheme works. The parameter R gives the user the possibility to
adjust the transmission system to his needs of packet rate reduction
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Fig. 4. The packet rates measured in the experiment compared to
linear signal prediction without Kalman pre-filtering [5].

and frequency response. In our experiments we observe a signifi-
cant reduction in packet rate in comparison to previous approaches
without noticeable impairments of the immersiveness of the system.
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