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ABSTRACT 
In the research of spatial hearing and realization of virtual auditory 

space, it is important to accurately model the acoustical 

characteristics of HRTFs (Head-related Transfer Functions) or 

HRIRs (Head-related Impulse Responses). In our study, for the 

sake of modeling HRIRs more truthfully, aiming at HRTFs

characteristics in time domain, we managed to carry through 

adaptive non-linear approximation in the field of wavelet 

transformation and introduced a new spatial hearing approximation 

model based on translation-invariant a’ trous algorithm and 

reconstruction from modulus maxima. And the simulation results 

show that, this is a more effective HRIRs’ model, averagely 7.7dB 

better than the traditional PCA (Principal Component Analysis) 

approximation based on relative MSE criterion. 

1. INTRODUCTION 
In the research field of spatial hearing, people have long ago taken 

cognizance of the cues implied in a little grotesque spectrum. Thus 

the systemic description of the entire relevant information, HRTF, 

has been introduced to describe them, where interaural time 

difference (ITD) can be seen as the delay between lateral HRTF 

and low-amplitude contralateral HRTF in transmission time lags; 

and interaural intensity difference (IID) can be their difference in 

magnitudes. And people have also constructed different 

mathematical models to simulate this delicate function, and try to 

give a reasonable interpretation for this fancy phenomenon [1-4].  

As a popular model structure, PCA model has been greatly 

studied in this field [2-4]. Basically, [2] applied PCA to 

logarithmic magnitudes of HRTFs measured for 10 subjects and at 

256 positions. In this model, HRTFs for each position were 

represented as a weighted combination of a set of basis functions 

in low-dimensional subspaces, which were obtained from the 

measured logarithmic magnitudes of HRTFs; whereas the phase 

was approximated from the magnitude related to certain position 

based on minimum phase characteristics. The spatial feature 

extraction and regularization model put forward in [3] contains the 

phase information during the HRTFs’ approximation 

representation. Furthermore, a thin-plate spline using regulation 

procedures was also introduced to obtain a mathematical 

representation for sampled spatial positions. As a result, 

unmeasured positions’ HRTFs can be approximately reestablished 

from the mathematical equation, which effectively conquers the 

spatially discrete limitation of HRTFs’ measurement. However, 

these two PCA models were all used to process complex-valued 

(including amplitude and phase) HRTFs, and needed a lot of 

complex and logarithmic operations. And in [4], Wu applied 

Karhunen-Loève transformation to HRIRs in time domain to 

obtain another PCA model, which only required real-valued 

operations and behaved effectively for real-time implementation of 

VAS (Virtual Auditory Space). 

However, traditional orthogonal bases generally cannot give 

attention to two aspects of signals’ temporal and spectral 

characteristics; while due to the compact support wavelet 

functions’ capability in time-frequency localization and multi-scale 

analysis, they have extensive applications in signal’s nonlinear 

optimal and all-sided approximation [5]. Our work just finds a 

basis from this, and considers carrying through adaptive non-linear 

approximation in the field of HRIRs’ wavelet transformation. 

Recently, there are also some reports of HRTFs’ modeling by 

wavelet transformation, for example, [6] constructed a group of 

sparse filters to model HRTF based on wavelet’s multi-scale 

characteristics, whose results showed the excellence of filter-

bank’s model than HRTF’s conventional filter design algorithms, 

Prony, Yule-Walker and BMT. Whereas based on the distributing 

characteristic identification for all the HRIRs’ data in KEMAR 

package, our work in this paper points out that, because HRIRs 

cannot accord with Gaussian distribution commendably, the PCA 

approximation model based on Karhunen-Loève transform isn’t 

optimal and non-linear method can work well. As for this, we carry 

out detailed data processing experiments and validate our opinion. 

To sum up, the paper is organized as follows. In Section 2, 

some characteristics of HRTFs are given as the bases for our work. 

And in following Section 3, the method of HRIRs’ adaptive non-

linear approximation based on wavelet transformation modulus 

maxima is introduced in detail. And then the contrastive results 

with HRIRs’ PCA model are presented in Section 4. After that, 

several next-step directions are brought forward for future study. 

2. ANALYSIS OF HRTFs’ CHARACTERISTICS 
For this kind of signals just as HRTFs, Batteau made some 

investigations on the equivalent HRIRs in time domain [7]. And he 

found that, the impulse response could be seen as superposition of 

signals from echoes reflected on outer ears,  

1 1 2 2
( ) ( ) ( ) ( )h t t a t a tδ δ τ δ τ= + − + − , (1) 

where 
1

a  and 
2a  are the reflection coefficients; 

1τ  and 
2τ  are the 

time delay of reflected signals. Furthermore, when the elevation 

angle moves towards lower latitudes, the time delays usually 

increase. Hiranaka and Yamasaki further validated the above 

phenomena; and found that, all the reflection delays are less than 

350µs for human through experimentation. Moreover, they also 

found that, when sound source locates at frontage of human body, 

there are at least two reflection waves; at the backside, there is only 

one; while on top of head, there are scarcely any reflection 

components [8]. Hebrank and Wright also confirmed the 

relationship between HRTFs’ characteristics and delays of sound’s 

reflections [9].  

All these reveal the facts that there probably exist some 

singularities of HRTFs in time domain, and suggest us to utilize 

different singularities of different signal components in modeling 
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HRTFs. Our work is just based on the above contents, and 

introduces a new spatial hearing approximation model utilizing the 

translation-invariant a trous algorithm and reconstruction of 

modulus maxima [5, 10].  

Furthermore, it is well known that, PCA is the optimal 

approximation representation of a group data under linear 

condition [5]. If ( )H n  is a stochastic vector composed of all the 

HRIRs of KEMAR package, the HRIR ( )
l

h n  on a certain position 

can be expressed as [4],   

1

( , , )( )
N

l av i l l i av l

i

h w nn θ ϕ ε
=

= + = + +Qw h q h  (2) 

where 
1 2

[ , , , ]
N

=Q q q q , satisfying the normalized condition: 

T T

I= =QQ Q Q , is composed of the eigenvectors 
i

q of 

( )H n ’s autocovariance matrix 
h

R ;

1

1
( )( )

P

T

h l av l av

lP =

= − −R h h h h ,

1

1 P

av l

lP =

=h h ;

( )
T

i i av
= −w Q h h ; P  is the measured HRIRs’ number in 

KEMAR package; and then 
l

ε  is the approximation error of 

( )
l

h n ’s PCA approximation model with N  ranks. 
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Figure 1. Lilliefors hypothesis testing for good fit to a normal 

distribution of HRIRs 

Such results can be made clear in the below geometrical 

explanation [5]: the HRIR connected to each direction is a 

realization of stochastic vector H  of HRIRs; bases vectors 
i

q of 

Karhunen-Loève transformation present the principal axes of 

HRIRs data distribution; and the biggest eigenvalues correspond to 

the directions with dense distributing of the data. As a consequence, 

HRIRs’ reconstruction from projection onto these directions can 

results in minimum average errors. However, the presupposition is 

that, if the stochastic vector H  of HRIRs has Gaussian 

distribution, its probability density is uniform along the ellipsoids 

whose axes are proportional to the eigenvalues 
i

σ  in directions of 

vector 
i

q . However, if H  is not a Gaussian process, a non-linear 

approximation may be much more accurate than the linear 

approximation; and the Karhunen-Loève transformation basis is no 

longer optimal. Here, by performing a Lilliefors test for goodness 

of fit to a normal distribution of HRIRs, shown in Figure 1, it is 

observable that, most of the HRIRs’ samples don’t satisfy the 

hypothesis of normal distribution very well (The result of the 

hypothesis test is a Boolean value, which is 0 when you do not 

reject the null hypothesis, and 1 when you do reject that 

hypothesis.). Therefore, the PCA model based on Karhunen-Loève 

transformation cannot optimally approximate non-Gaussian 

HRIRs’ data. 

3. ADAPTIVE NON-LINEAR APPROXIMATION 

ALGORITHM BASED ON WAVELET 

TRANSFORMATION MODULUS MAXIMA 
First of all, we introduce the basic theory of wavelet transformation 

and analysis [5, 10]. We all know that, traditional Fourier 

transformation can depict stationary signal very well all through 

the time or space domain; but some essential information in a 

signal, such as singularities and irregular structures, is usually 

blurred in its transformation domain. However, these local 

characteristics can be detected and represented by using wavelet 

transformation at different fine scales. Suppose ( ) ( )2

h t L R∀ ∈ ,

where ( )2
L R  denotes the vector space of measurable, square-

integrable one-dimensional function or signal ( )h t , the continuous 

wavelet transformation of a signal ( )h t  is defined below, 

( ) ( ) ( )1 / 2

,
, , , 0

h a b

t b
WT a b h a h t dt a

a
ψ ψ

∞−

−∞

−
= = ≠  (3) 

where ( ) 1/ 2

,a b

t b
t a

a
ψ ψ− −

= , and ( )tψ  is the basic or mother 

wavelet. Then the inverse transformation is  

( ) ( ) ( )1

, 2
,

a b h

da
h t C t WT a b db

a
ψ

ψ
∞ ∞−

−∞ −∞
=  (4) 

where 
( ) 2

ˆ
C dψ

ψ ω
ω

ω
∞

−∞
= < ∞ , and ( )ψ̂ ω  is the Fourier 

transformation of ( )tψ .

Practically, the parameters a  and b  are usually digitized as 

1
, ; ,

2 2
j j

k
b a j k Z= = ∈ , then ( ) ( ) ( )/ 2

, 1
,

2 2

2 2
j j

j j

a b kt t t kψ ψ ψ= = − ,

which can be abbreviated as ( ),j k tψ . And then the wavelet 

transformation can be written in the following inner product 

between ( )h t  and ( ),j k tψ , i.e. 
,

1
, ,

2 2
h j kj j

k
WT h ψ= . Because 

wavelet transform has different time-frequency resolution, it can 

meet and measure a signal’s different local variations in time or 

frequency domain. This characteristic has broad applications in 

detection and representation of signal’s time-frequency structures. 

Then for purpose of interpreting this problem clearly, we 

introduce a measure index, Lipschitz exponent (L.E.), which 

characterizes the local regularity of a signal at any time point. 

Suppose ( ) ( )2

h t L R∀ ∈ , the Lipschitz exponent of a signal ( )h t

at point 0x  is defined as, 

0 0( ) ( ) , 1nh t P t A n n
αε ε ε α+ − + ≤ < < +  (5) 

where ε  is a sufficiently small quantity; ( )nP t  is a polynomial of 

degree n  across point 
0( )h t ; and then the Lipschitz exponent of 

the signal ( )h t  at point 0x  is α .
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It can also be proved that, at the interval [ ]1 2,t t , if there is 

( , )
h

WT a b Ka
α≤  i.e. log ( , ) log log

h
WT a b K aα≤ + , (6) 

the signal ( )h t  is well-proportioned Lipschitz α  at interval 

[ ]1 2,t t , where K  is a constant related to the given wavelet 

function. Moreover, if there is 2 ja = , the formula (6) has the 

following expression, 

(2 , ) 2
j j

h
WT b K

α≤  or 
2 2

log (2 , ) log
j

h
WT b K jα≤ + . (7) 

Thus the term jα  makes connection between scale j  and 

Lipschitz exponent α , and reveals some variational regulations 

between a (or j ) and Lipschitz α : when 0α > , the wavelet 

transformation modulus maxima, i.e. the expression before the sign 

of inequality, increase with a (or j ); when 0α = , it remains 

unchangeable; while 0α < , the modulus maxima decrease with 

a (or j ); and the variational degree is close pertinent to the 

absolute value of α . Our work also bases on the above premise, 

and carries through adaptive non-linear approximation in the field 

of HRIRs’ wavelet transformation modulus maxima at different 

scales. 
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Figure 2. Decomposition flow chart of a’trous algorithm 

Moreover, the usually applied fast numerical computations of 

wavelet transform Mallat algorithm is subsampling after wavelet 

analysis filtering, which is not translation-invariant and unfit for 

the singularities’ detection of a signal [5]. Therefore, a fast dyadic 

wavelet transform using a filter bank algorithm without 

subsampling, introduced by Holschneider and Morlet and called 

the algorithme a’trous (in French), is calculated to construct 

signal’s translation-invariant representations. Because this 

algorithm is translation-invariant, it is especially suitable for the 

computation of wavelet transformation modulus maxima to 

improve singulaties’ detection precision, which is specially 

propitious for applications of signal’s pattern recognition, and so 

on. Its decomposition flow chart is illustrated in Figure 2, where 

we choose the Biorthonormal Quadratic Spline Filter (bior 3.1) as 

our wavelet function [10]. In our following experiments of HRIRs’ 

approximation modeling, the comparative results respectively 

using a’trous and Mallat algorithm are also given, from which we 

can clearly see the superiority of a’trous algorithm. 

Suppose that, ( )h n  is the HRIR signal to be analyzed; 0h  and 

1h  are the low-pass and high-pass filter related to our given 

wavelet function, bior3.1; 
1 ( ), ( )dS A h n n Z= ∈  is the sampling 

sequence of HRIR signal ( )h n ;
2

( ), ( )j

dW h n n Z∈  is the wavelet 

transformation; and 
2

( ), ( )j

dA h n n Z∈  is the relevant approximation 

of S  at scale j , the a’trous algorithm of wavelet transform is 

shown below: 

1 12 2
( ) ( )( )j j

d d jW h n A h h n+ = ∗  (8) 

1 02 2
( ) ( )( )j j

d d jA h n A h h n+ = ∗  (9) 

where { } { }{ }2 2
( ) ; ( ) , 1,2, ,j j

d dA h n W h n j J=  are the wavelet 

transformation of signal S ; j  is the analytical scale; and J  is the 

maximum decomposition scale. Then the modulus maxima are just 

the below 
2

( )j

d
W h n  satisfying the inequations (10), indicated as 

2
( ), 1,2, , ; 1,2, ,j

j

d

k j j
W h n j J k K= = , where 

jK  is the quantity of 

modulus maxima; and jk  is the sequence number of modulus 

maximum. 

2 2 2

2 2

( ) ( 1) ( 2)

( ) ( 1)

j j j

j j

d d d

d d

W h n W h n W h n

W h n W h n

≥ − > −

≥ +
 or 

2 2

2 2 2

( ) ( 1)

( ) ( 1) ( 2)

j j

j j j

d d

d d d

W h n W h n

W h n W h n W h n

≥ −

≥ + > +

 (10) 

The reconstruction of a signal ( )h n  from its wavelet 

transformation modulus maxima is just to utilize the selective 

modulus maxima 
2

( )j
j

d

k
W h n  to recover the corresponding wavelet 

transformation and resulting original signal’s approximation [5]. 

On all accounts, the realization method of HRIRs’ spatial 

hearing approximation model from wavelet transformation 

modulus maxima is concluded as follows. Firstly, we apply 

translation-invariant a’trous decomposition algorithm to represent 

HRIR signal ( )h n  at different scales. Where as for the 512 samples 

long HRIR data of KEMAR, when the decomposition layer is 2, 

the approximation precision usually satisfy the requirement in our 

simulation experiments, and the improving of effect is not obvious 

with the increase or decrease of layers. Secondly, based on the 

above processing results, we get the modulus maxima of HRIR’s 

wavelet transformation [10]. After that, under the circumstance 

with approximately equal threshold with PCA model and wavelet 

model based on Mallat algorithm, the threshold T  of modulus 

selection is also set as 2% of HRIR’s Euclid norm at certain 

position (T  is related to individual HRIR signal on this location. 

We compare every modulus maxima 
2

( )j
j

d

k
W h n  with the threshold, 

if the modulus is a smaller amount than T , which is discarded; 

otherwise, it is reserved.). At last, during the reconstruction of 

HRIR signal, we make use of relevant synthesis algorithm to 

recover the HRIR’s approximation version from its singularities 

once more [5, 10].

4. SIMULATION RESULTS 
Here, the data of KEMAR’s HRTFs, which offered by MIT Media 

Lab [11], are used in our simulation work. The measurements of 

the data were made with speaker on the discrete positions every 

10o in elevation, and 5o 30o unequally in azimuth. Moreover, the 

measured data may be contaminated by deficient factors, and thus 

it is necessary to get rid of the contamination before further 

processing. Some other meticulous and important processing refers 

to [11]. In view of all the 710 measurement positions of KEMAR, 

we firstly process the HRIRs data according to PCA method in 

time domain, where 18 principal components, accounting for 98% 

of the variance in the original HRIRs, are selected as the basic 

basis vectors to approximate the measured HRIRs. And the 

resulting PCA approximation model totally has 21996 values. 

Figure 3 is a demonstration (Azimuth=0o, Elevation=90o) of the 

HRIRs’ PCA model.  
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Figure 4 give a demonstration of the HRIRs’ wavelet adaptive 

approximation model based on Mallat algorithm [12]. 

The demonstration of HRIRs’ spatial hearing model based on 

wavelet transformation modulus maxima is given in Figure 5. 

From the quantitative results, we can see that, the error of HRIR’s 

PCA model at this position is 0.2; the error of wavelet adaptive 

approximation model based on Mallat algorithm is 0.02; while the 

HRIR’s model based on wavelet transformation modulus maxima 

has error 0.006, which excels the above two results. 
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Figure 3. A demonstration of the HRIRs  PCA model 
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Figure 4. A demonstration of the HRIRs  wavelet adaptive 

approximation model based on Mallat algorithm 

As for all the measurement positions, shown in Figure 6, 

under the circumstance with approximately equal threshold, the 

HRIRs’ wavelet adaptive model based on Mallat algorithm 

preserves 24572 parameters values (denoted as “threshold 

selection” in the legend box of Figure 6), where we select 

Daubechies10 wavelet; and its model’s error -18.1dB is better than 

the PCA’s -13.1dB. But both of them are inferior to the 17644 

values and -20.8dB error of HRIRs’ wavelet modulus maxima 

approximation model. Of course, the improved approximate error 

is achieved by a little redundancy of processing time. On the 

notebook PC with Intel Celeron M 1.5GHz and 224M memory, 

PCA needs about 10s, while the wavelet approximation model 

based on modulus maxima needs 32s. However, fortunately, these 

processing time are all within the bounds of VAS’s 

implementation [1]. 

Here, we use the following error formulation [3]: 
2 2ˆe h h h= −  (11) 

where h  is the measured HRIR; and ĥ  is the approximation 

model’s HRIR. 

5. CONCLUSIONS AND FUTURE WORK 

As seen from the results of different approximation models, this 

adaptive one based on wavelet transformation modulus maxima 

and singularities’ detection of HRIRs achieves better effects than 

that using Mallat algorithm and the PCA model, which show the 

non-linear methods’ validity in HRIRs’ approximation modeling. 

As for future work, some other practical utilities should be 

considered in detail, and listening tests will also be performed to 

evaluate subjective performance of these models. 
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Figure 5. A demonstration of the HRIRs  wavelet 

transformation modulus maxima model  
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