
Real-Time Software Implementation of H.264 Baseline Profile Video Encoder for
Mobile and Handheld Devices

G Nageswara Rao, Prasad RSV, D Jaya Chandra and Srividya Narayanan

Emuzed India Private Limited, Bangalore, India
Email: {gnr, rsv, djayachandra, srividya}@emuzed.com

Abstract---The new video compression standard,
H.264/MPEG-4 AVC, promises better rate-distortion
performance and compression efficiency over all its
predecessors. However, the computational complexity of
the H.264 video codec is increased drastically because of
inclusion of many new coding, error-resilience and
network friendly tools and techniques, which results in
it’s implementation for low-end mobile and hand held
devices practically difficult. This paper presents fully
optimized H.264 baseline profile video encoder to show
its suitability for mobile and hand-held applications.
Various algorithmic and implementation techniques to
optimize H.264 video encoder at low bit-rates are
described. The complexity requirements for H.264 video
encoder on various low-end processors are presented.

Index terms---Video Coding, H.264/AVC, Baseline
Profile, SIMD

I. INTRODUCTION
H.264/AVC is the newest video coding standard [1] of the

ITU-T Video Coding Experts Group and the ISO/IEC
Moving Picture Experts Group. The main goals of the
H.264/AVC standardization efforts are enhanced
compression performance and provision of a “network-
friendly” video representation addressing “conversational”
(video telephony) and “non conversational” (storage,
broadcast, or streaming) applications. H.264/AVC has
achieved a significant improvement in rate-distortion
efficiency relative to existing standards. Like previous video
coding standards (MPEG-4, H263 etc), Advanced Video
Coding (AVC) is also based on hybrid block-based motion
compensation and transform-coding model, but it supports a
lot of additional and enhanced tools. H.264 supports tree
structured motion compensation with luminance block sizes
of 16x16, 16x8, 8x16 and 8x8. The 8x8 sub-macro block
can be further divided into partitions with block sizes of
8x4, 4x8 and 4x4. It supports motion-compensated
prediction with multiple reference frames. The accuracy of
displacement vectors supported by H.264 is quarter-pixel
(1/4 pixel). An in-loop de-blocking filter aims at improving
prediction and reducing visual artifacts. AVC adopts
directional spatial prediction for intra-coding [2] to predict
the pixels from the neighboring samples of already coded
blocks. The conventional 8x8 floating-point discrete cosine
transform is replaced by a purely integer transform at small
block sizes (4x4) [2]. Transform at small block sizes helps

to reduce blocking and ringing artifacts, while the integer
specification prevents any mismatch between encoder and
decoder. An efficient Context Adaptive Variable Length
Coding [2] is adapted for H.264 baseline profile.

The field of mobile video and wireless video
communication demands a better video coding technology at
low bit rates and lowest computational complexities without
any loss of visual quality. Although H.264 offers good
efficiency [3] in terms of quality, its computational
complexity, makes its implementation difficult for mobile
and low power applications. Thus the real time
implementations and design of fast algorithms for different
coding tools is drawing lot of attention. The present work is
aimed at designing different optimization techniques suitable
for low-end platforms, which makes it possible to achieve
real time performance for mobile video applications without
any visual quality degradation. Section II explains possible
algorithmic and architectural optimizations of complex
modules of H.264 encoder. Results and conclusions are
presented in section III.
�

II. OPTIMIZATION TECHNIQUES FOR H.264
This section explains the different optimization techniques
in motion estimation, intra prediction process, and other
major modules of H.264 encoder.

A. Intra Prediction
The standard supports intra prediction at two block sizes of

4x4 and 16x16 for luminance and at 8x8 block size for
chrominance [2]. The prediction at 4x4 luma block is well
suited for coding parts of a picture with significant detail.
Where as, the prediction at 16x16 luma block is more suited
for coding very smooth areas of a picture. Standard defines
4 modes of 16x16 block prediction, 9 modes of 4x4 block
prediction and 4 modes of chroma block (8x8 block)
prediction. Thus selection of best prediction mode of any
macro block requires to evaluate all options and finding the
one that gives the least residual signal. Thus finding best
prediction mode for 16x16 luminance block requires to
process about 3328 pixels (4* (16*16) + 9* (4 * 4)* 16),
which is approximately equal to computation of 13 SADs
(Sum of Absolute difference) for 16x16 block in motion
estimation which shows that intra prediction search is
equally complex as motion estimation. As both P and I
frames shall use intra predicted blocks, all the frames
requires evaluating best intra modes for each macro block
and thus contributes considerable share in computational

V 457142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

complexity of encoder. Thus it makes sense to take early
decisions and reduce the complexity. This section presents
fast techniques to find the best intra SAD in I-frame and fast
intra-inter decision process for P-frame. Intra prediction
mode decision in I frame and P frame has different
importance in terms of quality-complexity tradeoffs. We
consider intra prediction in I frame as special case to
tradeoff both coding efficiency and speed complexity as it’s
quality is critical for the coding efficiency of future frames.

Intra Prediction in I frame: The best mode of 16x16
block prediction are evaluated first by comparing their
SADs and if it’s best SAD is less than predefined threshold
the remaining search at 4x4 block size is skipped. SAD
computation for 16x16 blocks is done considering
alternative pixels only, to minimize the computational
complexity. The best prediction mode for chroma blocks is
derived from best mode of corresponding 16x16 luma block.

In-place reconstruction in prediction mode search of
4x4 blocks: As the intra prediction at 4x4 block level
requires the reconstructed pixels of the neighboring 4x4
blocks, after finding best mode for a 4x4 block,
reconstruction is done in-place and at the same time the
transformed and quantized residuals for the same block are
retained. If the final prediction is at 4x4 block level, the
retained quantized coefficients are coded and thus avoiding
prediction, transform and reconstruction. With early exit
criteria of intra prediction best mode search at 16x16 block
level, the probability for re-computation would be low. The
steps of intra prediction in I frame is summarized as follows.

Step1. Compute Best intra prediction mode for 16x16
block and its SAD. If 16x16 block prediction SAD is less
than a threshold exit the search for best intra mode and
continue with the transform quantization and coding.

Step 2. Compute the best intra mode for each 4x4 block
and compute the transform and quantization for the same
and then reconstruct in place. Continue this step for all 4x4
blocks in scan order.

Step 3. Find the best intra mode of macro block by
comparing 16x16 block level best mode SAD and 4x4 block
level best mode SAD. If the 4x4 block level prediction is
resulted as best mode, code the quantized data available in
step 2. Other wise replace original pixel data and continue
with prediction, transform quantization and coding for
16x16 block.

Inter-Intra Decision: Any macro block in P frame can be
predicted as INTER or INTRA, thus before it is
transformed, quantized and coded, decision for INTER or
INTRA need to be taken, for which distortion and bits
consumption of each mode need to be evaluated. But
evaluating all Intra prediction modes for the given block in P
frame is costlier as frequency of occurrence of P frame in a
sequence is more. It is well agreed that the probability for
Intra macro blocks to occur in P Frames is very less and fast

approximation of Inter-Intra decision process leads to good
computational gains at the cost of negligible loss of quality.
Here we proposed a fast algorithm based on evaluating one
intra prediction SAD and comparing it with the inter
prediction SAD resulted after motion estimation to predict
the right choice of coding mode for the macro block. Here
we considered DC prediction mode of 16x16 luma block as
it is a better approximation for the average content in the
macro block and it’s simplicity of implementation for inter-
intra decision. And it is empirically observed that SAD for
any other intra mode would not be less than 25% of DC
prediction mode SAD with high probability, and at the same
time there is high probability for inter SAD to be less than
1/4th DC SAD (about 80% of the times). The fast algorithm
for inter-intra decision can be summarized as fallows,

Step 1: If the inter SAD computed in motion estimation is
less than a threshold T, decide the coding type of the macro
block as INTER, and go to step 5.

Step 2: Compute DC prediction mode SAD for the 16x16
block. If (4 * Inter Mode SAD < DC mode SAD) Then
decide the coding mode for the macro-block as INTER and
go to step 5

Step 3: if (DC mode SAD > Th1 and 2* Inter Mode SAD <
DC mode SAD) Then decide the coding mode for the macro-
block as INTER and go to step 5
Step 4: Compute the best intra mode exhaustively as
computed for I frame. Compare the SADs of best intra mode
and inter mode and decide least SAD mode as the coding
mode of the macro-block and go to step 5

Step 5: Continue with the next steps of encoding.

The results of fast inter-intra decision algorithm are given
in Table.1. The % of computational gain is calculated as
percentage of macro blocks avoided in intra mode search.

B. Motion Estimation
H.264 supports up to quarter pixel resolution of motion

vectors and motion vectors up to 4x4 block level, as a result,
the computational complexity of the motion estimation
process drastically increases, which demands designing fast
algorithms and implementations. With proper selection of
the motion compensation tools, the motion estimation
algorithm could be designed to suit the mobile applications.

V 458

Motion estimation up to 4x4 blocks is computationally
complex task with insignificant coding efficiency
improvements at low bit rates. It is observed that the motion
estimation up to block size 8x8 is a better quality-
complexity trade-off for low bit rate applications. Similarly
to minimize the memory requirements and computational
complexity at acceptable quality the number of reference
frames can be restricted to one for mobile applications at
low bit rates. This section describes the efficient
implementation of fast motion estimation algorithms.
Though the implementation techniques can be applied to all
motion estimation techniques, our work and results given are
based on Spatio-Temporal motion estimation technique [4].

1) Integer Pixel Motion Estimation
Search Strategy: The 16x16 motion vector is calculated

first using a fast motion estimation algorithm based on
spatio-temporal correlation of motion vectors [4]. The
algorithm is designed such that search range for motion
estimation dynamically gets adapted to the motion in the
video. The early stopping decisions [6] for motion
estimation to increase the speed are incorporated. The
motion vectors for other block-sizes are calculated using a
small diamond search around the 16x16 motion vector.
Thereafter, R-D optimized decision is taken to select the
best block-size. The SAD of 16x16 block is computed as
sum of SADs of each of its 8x8 block. This allows reusing
the SAD values for finding best match in sub-macro block
motion estimation at 16x8, 8x16 and 8x8 block levels.

Alternate Sub-sampling with SAD value prediction:
SAD calculation contributes to the most of the
computational complexity in motion estimation process. To
reduce this complexity, the SAD is calculated as sum of
absolute differences between every alternate pixel in the
corresponding blocks of reference frame and current frame.
Thus, with alternate sub-sampling, the SADSS is calculated
over 128 pixels in the macro block instead of 256 pixels. At
the end of the calculation the SAD value is doubled to make
it near equivalent to the actual value.

The assumption here is that the SAD value computed using
alternate pixels is close to the SAD value of pixels that are

ignored. But when SADSS of sub-sampled block is very high
then it can be observed that the SAD of alternative pixels
will widely vary from each other, thus predicting the original
SAD as double of that sub-sampled SADSS would not yield
good comparison for different ranges of SADSS values. Thus
SADP value prediction is modified to account the different
ranges of SAD values as in equation (1),

SADP = SADSS * 2 + SADSS* k (1)

Where the k is a factor, which is tuned to 1/8 for 8x8, 8x16
and 16x8 blocks and is tuned to 1/16 for 16x16 blocks.
Although the SADP value predicted from the above relation
is not guaranteed to approximate to the original block SAD,
it results in a value suitable for comparison of sub sampled
SADs of different ranges in deciding best match. The
alternative sub-sampling techniques are suitable only for
architectures where SAD value is computed pixel by pixel.
Thus this technique is not applied in SIMD architectures as
packing and unpacking of data, counter balances the
computations avoided in sub-sampling. The Table 2 shows
the PSNR and complexity reductions for alternate sub-
sampling with simple prediction and weighted prediction.
Alternate sub-sampling along with the proposed SAD
prediction technique allows using it for fractional pixel
motion estimation also with negligible loss of accuracy.

2) Sub-pixel Motion Estimation
Approximation of 6-tap filter to 4-Tap filter for

Motion Estimation: In H.264 half pixels are interpolated
as low-pass filtering of integer pixels with 6 Taps, where [1,
-5, 20, 20, -5, 1] are used as filter coefficients. In the motion
estimation process 6-Tap filter can be approximated to a 4-
tap filter with filter coefficients [-1, 5, 5, -1] as described in
[5]. The major advantages with 4-Tap filters are
computational efficiency, requires less memory bandwidth,
and suitable for SIMD architectures.

4-Tap Filter implementation for SIMD architectures:
The implementation of 4-Tap filtering for vertical pixels on
SIMD architectures is quite difficult as efficient use of the
SIMD instructions is not possible when the data is to be
reordered. Here a modified vertical filtering by exploiting
symmetry of filter coefficients is presented which allows the
efficient implementation on SIMD architectures.
Let’s say A, B, C, D are pixels consecutively placed in
vertical direction. Then vertically positioned half pixels h
between B and C are interpolated as follows.

h1 = (-(A + D)>>1 + 5 *(B + C)>>1) (2)

h = Clip1 ((h1 + 2) >> 2) (3)

The advantage with the above filtering structure is that it
requires lesser unpacking instruction in SIMD architectures
compared to regular structure. The averaging operation
involved in Eq.2 can be computed for four pair of pixels in-

V 459

place in one operation. For example in ARM11 a 4x4 block
can be loaded into four registers and registers having
alternate rows of four pixels can summed and divided by 2
in one operation (using SHADD8 instruction). The quality
loss with the modified structure of the 4-Tap filter is
negligible. Table 3 shows PSNR differences for 4-Tap filter
and modified 4-Tap filter for SIMD architectures.

Efficient quarter pixel interpolation and SAD
computation: Quarter pixels are interpolated as the bilinear
interpolation of adjacent integer pixel and half pixel or two
half pixels. Thus merging SAD calculation of the current
block with quarter pixel interpolation of the reference block
will avoid the load-store for intermediate values.

C. Transform and Quantization
Quantization in the loop of transform: DCT and
quantization computation for 4x4 block are merged to
reduce the number of memory load and store operations.

Efficient prediction of not coded blocks and CBP
calculation: Transform, quantization and coding for an 8x8
block can be skipped by predicting not coded blocks using
SAD values. At another level of prediction for not coded
blocks to minimize DFD (Decoded Frame Distortion) is
based on cost calculated from levels and runs of quantized
coefficients. Where last position of quantized non-zero
coefficients is exploited to minimize the complexity
involved in finding cost. The Coded block patterns for a
given macro block is computed in the loop of cost
calculation for prediction not coded blocks.

III. RESULTS & CONCLUSIONS

The impressive coding efficiency of H.264/AVC comes at
the expense of significantly increased computational
complexity compared to existing standards, which have
limited the availability of cost-effective, high-performance
solutions. The suitability of H264 codec for low-end
applications can be proved with fully optimized codec,
which meets the real time requirements of low-end
applications. The paper proposes set of optimization
techniques, which makes that possible on mobile platforms
and respective results for each technique are presented in the
corresponding sections. The complexity and PSNR results
for fully optimized H.264 baseline profile encoder are

presented in Table 4 to show its suitability for real time
recording of video on mobile and hand-held (mobile phone /
portable media player) platforms at acceptable video quality.
The encoder is tested for its real time performance on
Pocket PCs and Smart phones available in the market.
Results are generated for QCIF resolution at 15fps, and
64kpbs. The complexity is measured on Intel wireless MMX
(Bulverde) based pocket PC running at 520MHz and on
ARM1136 core. The complexity of a video codec on an
embedded platform is measured in mega cycles required to
encode given number of frames in a second (MHz/Sec) or at
a given frequency of operation number of processed frames
per second (fps). Here encoded frames per second is used as
complexity measure on Pocket PC and MHz/Sec with zero
memory wait states is used as measure on ARM11 core. The
results demonstrate achievability of high quality real time
H.264/AVC recording and playback on handheld platforms.

REFERENCES

[1] Joint Video Team of ITU-T and ISO/IEC JTC 1, ITU-T
Rec. H.264 — ISO/IEC 14496-10 AVC, March 2003.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra,
“Overview of the H.264 / AVC Video Coding Standard”,
IEEE Transactions on Circuit and Systems for Video
Technology,VOL. 13, NO. 7, July 2003

[3] Sergio Saponara, Carolina Blanch, Kristof Denolf, Jan
Bormans, “The JVT Advanced Video Coding Standard:
Complexity and Performance Analysis on a Tool-by-Tool
basis” Packet Video 2003, Nantes, France, April 2003

[4] K Ramkishor and S.Krishna, “Spatio-temporal Correlation
Based Fast Motion Estimation Algorithm for MPEG-2”, IEEE
Proceedings of the 35th Asimolar conference on Signals
Systems and Computers, pp. 220-224, November 2001.

[5] PSSBK Gupta and K. Ramkishor, "Novel Algorithm to
Reduce Complexity of Quarter Pixel Motion Estimation"
Visual Communication and Image Processing (VCIP),
California, Jan’2004.

[6] K. Ramkishor, PSSBK Gupta, T. S. Raghu, and K. Suman,
“Algorithmic Optimizations for Software-only MPEG-2
Encoding”, IEEE Transactions on Consumer Electronics, Vol.
50, No. 1, Feb’2004.

V 460

