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ABSTRACT

In this paper, we propose an iterative constrained opti-
mization (ICO) approach to classifier design. When a set of
conflicting objectives needs to be simultaneously satisfied, it
is often not easy to combine all the utilities in a single overall
objective function for optimization. We instead formulate the
problem with conflicting objectives as a single-objective op-
timization scenario while embedding other competing objec-
tives in constraints so that the original problem can be solved
by adopting conventional constrained nonlinear optimization
techniques. The bounds needed to constrain each objective
are determined based on the objective function values ob-
tained in the previous iterate. The so-formed individual con-
strained optimization problems are solved until a stable solu-
tion is obtained. We illustrate the utility of our framework in
the context of designing classifiers for text categorization and
automatic language identification. The results of our exper-
iments demonstrate that our approach achieves a significant
improvement in one objective with only slight degradation of
the other conflicting objective.

1. INTRODUCTION

Many problems in a wide variety of engineering disciplines
require the need to optimize several nonlinear functions of
the design variables simultaneously. Suppose that the system
specifications require the minimization of M conflicting ob-
jectives, i.e.,

min
x∈χ

[f1(x), ..., fM (x)]. (1)

The common approach is to set a single overall objective func-
tion that can combine all the utilities. However, the over-
all objective function is generally weak in achieving satis-
factory levels for all the conflicting objectives. It is very
likely that one objective function dominates the optimization
process and the others do not meet the goals initially set. In
particular, an overall objective function can be constructed
with equal importance on each objective, yet the resulting ob-
jective function values may turn out to be very different.

There is a recent effort in the machine learning commu-
nity to develop techniques to approximate empirical error rates
are as differentiable functions of the classifier parameters [1].

Such approximations bridge the gap between the classifier’s
learning objective and its performance since a single chosen
performance metric can be simulated and then optimized.

A multi-objective approach [2] is better suited for many
machine learning applications encountered, which typically
require the optimization of several and conflicting objectives.
This is because multi-objective optimization is concerned with
the optimization of all the objectives simultaneously.

In this paper, we develop an approach, which we refer
to as iterative constrained optimization (ICO), that can si-
multaneously optimize several conflicting criteria. By iter-
atively optimizing one objective at a time with constraints on
others and adjusting the constraint bounds by using informa-
tion from previous iterate, ICO framework yields satisfactory
achievements for all the objectives simultaneously.

In Section 2, we briefly overview some related concepts
in multi-objective optimization that will be used later. In Sec-
tion 3, we describe our approach. Later, we apply our ICO
framework to two areas in machine learning, namely text cat-
egorization and automatic language identification. We report
the experimental results in Section 4. We finalize the paper
by concluding remarks in Section 5.

2. BACKGROUND

In multi-objective optimization problems, there are usually
(infinitely) many optimal solutions that constitute the so-called
Pareto optimal set.
Definition 2.1 A decision vector x∗ ∈ χ is (global) Pareto
optimal if there does not exist another decision vector x ∈ χ
such that fi(x) ≤ fi(x∗), for all i = 1, ..., M and fj(x) <
fj(x∗) at least for one index j [2].
Mathematically, every Pareto optimal solution is an equally
acceptable solution to the multi-objective optimization prob-
lem. Usually, a decision maker is contained in the problem to
select one out of the many Pareto optimal solutions. Accord-
ing to the definition of Pareto optimality, moving from one
Pareto optimal solution to the other necessitates trading off.
It is said that two feasible solutions are situated on the same
indifference curve if a decision maker finds them equally de-
sirable.
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In the ε-constraint method [2], introduced as a solution to
multi-objective optimization problems, one of the objective
functions is selected to optimize and all the other objective
functions are introduced as constraints by setting up an upper
bound for each of them.

3. ITERATIVE CONSTRAINED OPTIMIZATION

We formulate the multi-objective optimization problem as a
set of M single-objective optimization problems in the form

min
x∈χ

f�(x)

subject to fi(x) ≤ fi + δi, i = 1, ...M, i �= �, (2)

for all � = 1, ...,M , i.e., the minimization of one objective
function with constraints on the other conflicting objectives
fi(x) where (fi + δi)’s are the objective function values to be
attained.

3.1. Discriminant Function Approach to Classifier Design

The first step in designing classifiers that optimize an objec-
tive function of interest f� is the approximation of f� as a
function of the classifier parameters ω. The linear discrimi-
nant function (LDF) with the category discriminant function
g(x, ω) = ωT x+ω0 is one family of pattern classifiers used to
classify the data samples x ∈ �n to predefined classes. Given
the category discriminant function, a category misclassifica-
tion function d(x, ω) can be associated to a decision rule: x is
classified to the target class C+ if d(x, ω) ≤ 0; otherwise, it
is categorized to the non-target class C− [1]. A category loss
function �(x, ω) = 1

1+e−(αd(x,ω)+β) can then emulate the clas-
sification operation since true-positives (TP), false-negatives
(FN), false-positives (FP) and true-negatives (TN) can be ap-
proximated as

TP ≈
∑

x∈C+

(1−�
+

), FN ≈
∑

x∈C+

�
+

, FP ≈
∑

x∈C−
�
−

, TN ≈
∑

x∈C−
(1−�

−
)

(3)

3.2. Single-Objective Optimization

3.2.1. Augmented Lagrangian Function (ALF)

One fundamental approach to the constrained optimization
problem in Eq. (2) is to replace the original constrained prob-
lem by a sequence of unconstrained subproblems. The ap-
proach we take to achieve this is the so-called the augmented
Lagrangian method [3, 4]. The problem with inequality con-
straints in Eq. (2) is first converted to a problem with equal-
ity constraints by introducing slack variables si by ci(x) −
si = 0, si ≥ 0, where ci(x) = (fi + δi) − fi(x) for all
i = 1, ..., M, i �= �. The slack variables si can be eliminated
by an explicit minimization with respect to each si ≥ 0 and
then can be substituted. This yields the problem of the mini-
mization of the augmented Lagrangian function (ALF)

LA(x, λk
i , ρk) = f�(x) +

∑
i∈�

ψ(xk, λk
i , ρk)} (4)

ψ(xk, λk
i , ρk) =

⎧⎨
⎩

−λk
i ci(xk) + ρk

2
c2
i (xk), if ci(xk) − λk

i
ρk

≤ 0

− (λk
i )2

2ρk , otherwise

(5)
The sequences of the penalty parameters {ρk} and the La-
grangian multipliers {λk} are generated by a general algo-
rithm by Powell (1969) [5] to ensure global convergence.

3.2.2. Unconstrained Optimization of ALF

Replacing the original constrained optimization problem with
the unconstrained optimization of the augmented Lagrangian
function in Eqs. (4) and (5), we need to decide how to move
from one iterate xk to the next xk+1 so that the objective LA

is minimized. The first step is to find a direction dk satisfying
the descent condition ∇xLT

Adk < 0. Then, a step-size αk in
the direction dk should be chosen so that LA is lowered as
much as possible.

In the quasi-Newton methods [3, 4], the descent direction
is found as dk = −Hk∇xLA(xk) where Hk is an approx-
imation to the inverse Hessian ∇2

xxLA. For the update of
Hk, we use the BFGS (Broyden-Fletcher-Goldfarb-Shanno)
algorithm for which there is growing evidence that it is the
best quasi-Newton method [3]. The Armijo rule [3, 4] is
used so that we find the largest step-size αk in the direc-
tion of dk such that LA(xk + αdk, λk, ρk) ≤ LA(xk, λk, ρk) +

αk∇wLT
A(xk, λk, ρk)dk.

The BFGS algorithm and the Armijo rule yield a sequence
of iterates xk that converges to the optimizer of the problem
at a super-linear rate [3, 4].

3.3. Iterative Refinement

Starting with an iterate x(1) and the corresponding objective
vector f (1) = [f (1)

1 (x), ..., f (1)
M (x)], it is desired to move into

another iterate x(2) yielding an objective function vector f (2)

where at least one objective function fk, 1 ≤ k ≤ M achieves
a considerably improved value, while others are only slightly
degraded.

In Figure 2, a feasible objective space Z for two-objective
case is illustrated, where z1 and z2 are properly scaled. Start-
ing with an initial feasible objective vector z, it is desired to
reach a point on the Pareto optimal set. In the simplest case of
two conflicting objectives, one iteration of moving from x(1)

to x(2) requires solving two subproblems of minimizing f1

and f2 with constraints on the other.

3.3.1. Generation of the Constraint Bounds

Suppose that the solution to the single-objective optimiza-
tion problem in Eq. (2) yielded an objective vector f (j) =
[f (j)

1 , ..., f
(j)
M ]. We can perturb f (j) only slightly by a δ ∈ �M

vector and set as the constraint bounds: Improving one objec-
tive at the expense of slight degradation on others, ICO tech-
nique refines the solution x(j) at every stage until it becomes
impossible to reach a more favorable indifference curve.
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Fig. 1. A point on the Pareto optimal set is sought starting at a feasible
objective vector z1, z2, z3, z4, z5. Each intermediate step yields an iterate
on a more favorable indifference curve. A slight change in the first objective

∆z
(1)
2 > 0 makes it possible to gain considerable improvement in f1 by

∆z
(1)
1 < 0 in the first subproblem.

In our framework, the constraint bounds δ = [δ1, ..., δM ]
for the next subproblem are set based on the objective vector
from the previous subproblem as

δ(j+1) = Ψ(j+1)f (j) (6)

where Ψ = diag(ψ1, ..., ψM ) is a diagonal matrix such that
0 ≤ ψi � 1, i = 1, ...,M . Each ψ

(j+1)
i is referred to as the

relaxation factor for the ith objective in the (j+1)st iteration.
The higher the ψi is, the higher the degradation allowed in the
ith objective is. Note that ψi = 0 means that the ith objective
is not allowed at all to be degraded. Although this situation
is desirable, remember that one objective can improve at the
expense of the conflicting objectives.

We consider two schemes for setting the relaxation fac-
tors ψi. In the first scheme, we choose the relaxation fac-
tors as (1) 0 < ψi � 1, ∀i = 1, ..., M, (2) ψ

(p)
i constant, ∀i =

1, ..., M .The first condition implies that each objective is only
slightly degraded while the second condition implies a small
constant degradation is allowed in all iterations. In the sec-
ond scheme, we choose the M relaxation factors by (1) 0 <

ψi � 1, ∀i = 1, ..., M, (2)ψ
(j)
i → 0 as n → ∞, ∀i = 1, ..., M .

This second condition implies that the degradation allowed is
reduced in each iteration. The latter can be satisfied by re-
ducing the relaxation factor as a geometric time series, i.e.,
cj , 0 < c � 1.

3.3.2. ICO Approach to Classifier Design

Through the use of Eq. (3), one can simulate classifier evalu-
ation metrics as differentiable objective functions of the clas-
sifier parameters. After the proper selection of a set of M
conflicting objectives, one can translate the ICO approach to
a classifier learning algorithm. The major advantage is that
any objective that is not satisfactory can be improved at the
expense of a minor degradation of the conflicting objectives.
In case one of the objectives is of greater importance, the con-
straints can be adjusted accordingly; at the same time, the re-
maining objectives still attain satisfactory levels since they are
subject to some worst-case upper bounds.

Unconstrained ICO

EARN P R F1 P R F1

MAX PRECISION 0.998 0.543 0.703 0.998 0.788 0.881
MAX RECALL 0.414 1.000 0.586 0.751 0.999 0.857

CORN P R F1 P R F1

MAX PRECISION 1.000 0.125 0.222 1.000 0.393 0.564
MAX RECALL 0.140 0.982 0.245 0.319 0.964 0.480

Table 1. For the maximization of precision, we let ψ = 0.005 for pre-
cision and ψ2 = 0.200 where each relaxation factor is reduced in each
iteration j as 0.5j . For the maximization of recall, we let ψ1 = 0.200
andψ2 = 0.01 and both are reduced as 0.1j in the jth iteration.

4. EXPERIMENTAL STUDY

4.1. Text Categorization

Text categorization [6] is the process of assigning text doc-
uments to a set of predefined categories based on document
contents. It is an important component for many applications,
including document routing/filtering, web organization and
word sense disambiguation. In text categorization, two stan-
dard performance evaluation metrics are precision and recall,

TP
TP+FP and TP

TP+FN , respectively. The common approach is
to have a compromise between these two conflicting objec-
tives.

In text categorization, each document is converted to a
document vector by counting the term occurrences in the doc-
ument. This results in a very large term-document matrix
of size 10, 118x7770 for the Reuters-21578 text corpus [1].
The LSI-based feature extraction technique [7] can be used
so that the dimension of the document vectors is reduced from
10,118 to 1618 while still retaining effective indexing infor-
mation.

We designed two classifiers for each objective following
our classifier design outline in Section 3.3.2. The advantage
of our ICO framework to the unconstrained approaches be-
comes clear when one objective has higher importance than
the other. In Table 1, the performance of the unconstrained
and constrained approaches are compared for two categories
where the objectives have asymmetric importance: EARN (a
large set) and CORN (a smaller set). For the category EARN,
when precision is maximized, our ICO framework achieves a
precision of 0.9942 whereas unconstrained approach achieves
0.9983, which means a loss of about 0.004. However, our ICO
framework results in recall 0.788 whereas unconstrained ap-
proach results in 0.5428. Hence, with little or no degradation
in one objective, our ICO approach can considerably enhance
the other. Similar arguments are valid for the maximization
of recall as well as for the category CORN with a lot fewer
category training documents.

4.2. Automatic Language Identification (LID)

The technique illustrated for the text categorization problem
can be applied to the problem of the classification of multi-
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media data. In [8], an acoustic segment modeling technique
is described for tokenizing the audio data for the LID task.
Upon tokenization, a speech segment or an utterance can be
represented as a vector of detected patterns and treated as a
spoken document. Documents from the same language are
then grouped into the same topic category. Similarly in [9],
a framework where image data is represented as a vector of
features and treated as text is developed. Therefore, by proper
tokenization of continuous signals such as audio or image, we
can construct corresponding multimedia feature vectors and
treat them as document vectors. Doing so, any text feature
extraction and classification method can be directly applied
to the LID, image annotation or other multimedia classifica-
tion problems.

LID is the process of determining the language identity
corresponding to a given set of spoken queries. It is used
in applications such as multilingual speech recognition, spo-
ken language translation and spoken document retrieval. The
common evaluation metrics in the LID task are false rejection
(FR) and false alarm rates (FA), FN

|C+| and FP
|C−| , respectively.

The usual approach is to have a tradeoff between these two
conflicting metrics to reach a balance.

In our experiments, we used the data provided by Bin
Ma [8]. The training data set consists of more than 170,000
training samples and the evaluation set consists of 1492 un-
known samples. We designed two classifiers for each objec-
tive following our design outline in Section 3.3.2.

In Figure 2, the changes of FR, FA and their arithmetic
average (Cdet) for both the training and test data are illus-
trated separately as a function of iteration number. With an
inspection of the change of errors for ”Mandarin” (MA), we
see that FA is reduced from 31.90% to 7.69% (i.e. by more
than 24%) at the expense of an increase in the FR from 1.11%
to 3.09% (i.e. by less than 2%) in the training data. Similarly
in the test data, FA is reduced from 31.29% to 9.21% (i.e.
by more than 22%) at the expense of an increase in FR from
0.00% to 1.28%. It is remarkable that the two conflicting ob-
jectives move towards a balance: To improve one objective,
we deliberately degrade the other objective a little. Similar
results were obtained for the other languages, and further ex-
periments support that the improvement is obtained only with
a slight degradation.

5. CONCLUSION

In this paper, we laid the formal treatment of an augmented
Lagrangian-based multi-objective optimization approach to
classifier design, which we refer to as iterative constrained
optimization (ICO). The original optimization problem with
conflicting objectives is formulated as an iterative process of
single-objective optimization problems in which the remain-
ing objectives are embedded as constraints. We refine the
bounds needed to constrain the conflicting objectives based
on the slight perturbation of the previous subproblem in an
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Fig. 2. The change of false alarm (FA), false rejection (FR) and their aver-
age Cdet for the language ”Mandarin” (MA). We let the relaxation factors be
ψ1 = 0.003 for the false alarm rate and ψ2 = 0.006 for the false rejection
rate.

iterative manner. We illustrated the utility of our ICO frame-
work developed in the context of classifier design in text cat-
egorization and automatic language identification. We ob-
served that ICO approach can achieve a remarkably better
performance in one objective with a slight degradation on the
other conflicting objective.
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