
COMPRESSED DOMAIN VIDEO EDITING

Ragip Kurceren and Fehmi Chebil

Nokia Research Center, Irving, TX USA

ABSTRACT

This paper addresses introduction of special video effects to

the coded bitstreams in compressed domain. We propose

novel compressed domain operations to achieve several

video editing effects for motion-compensated family of

video codecs. We then present detailed description of

achieving blending of two video sequences. Results

demonstrate significant computational savings over the

conventional approach.

1. INTRODUCTION

Accelerated with the emergence of the latest camera

equipped mobile phones, there has been explosive growth

of captured image and video content. The convergence of

the multimedia domains, including supported formats, and

availability of easy content transfer between devices

increase users’ interaction with the captured information,

such as sharing and content personalization. Although

significant efforts have been spent on developing techniques

for storage and transport of multimedia, personalization of

content, in terms of manipulation of the content to achieve

desired effects, still requires development of more efficient

algorithms especially for power constrained devices such

mobile devices and PDAs.

There are several PC-based commercial products

providing video-editing functionalities, where the

processing power and memory consumption have not been a

constraint. Typically, the editing operations on video

sequences are performed in their raw formats. More

specifically, the compressed video is first decoded, the

editing effects are introduced, and finally the output is re-

encoded. This so called spatial domain video editing scheme

cannot be applied on devices, such as mobile phones, that

have limitations in processing power, storage space and

battery.

This paper introduces optimized algorithms for several

video editing effects, such as fading, blending sequences

and logo insertion, in the compressed domain. Our approach

is based on modifying the residual frames to achieve the

desired effects without performing any motion estimation

operation. Results demonstrate that significant speed-ups

are achieved compared to the conventional spatial domain

approach and to other existing methods in the literature.

In what follows, we briefly overview general video

compression algorithms and highlight the motivation and

challenges behind performing editing operations in the

compressed bit-stream domain. We then present the

techniques for applying video editing in the compressed

domain. Finally, we present our experimental results,

comparing the suggested techniques with the conventional

approach.

2. BACKGROUND

Video editing for compressed bitstreams represent several

challenges due to the dependencies in the compressed data.

State-of-the art video compression standards such as

MPEG-2, H.263[2], MPEG-4 v2[1], H.264, provide coding

tools to exploit spatial and temporal redundancies present in

the video sequences. For example, coding modes generally

referred as intra-frame, exploit the spatial correlation of the

pixels within the frame while coding modes referred to as

inter-frame, make use of prediction from temporally other

frames exploiting the temporal redundancy. Since in a

typical video sequence the adjacent frames are highly

correlated, higher compression efficiencies are achieved

when using inter-frame coding instead of intra-frame

coding. On the other hand, inter-frame coding modes

introduce dependencies within the compressed bitstream.

Therefore, the introduction of a visual effect on one video

frame may not be confined to that particular frame but may

further propagate in time due to inter-frame coding.

There are several algorithms in the literature for

efficient video editing and transcoding. Chang et al. in [4]

presented DCT domain algorithms for manipulating and

compositing motion compensated DCT based compressed

video, such as overlapping, translating, scaling, linear

filtering, rotation and pixel multiplication. Smith and Rowe

in [3] presented basic operations in transform domain for

manipulating JPEG compressed images to implement

dissolving of a sequence of images and introduce subtitles.

Fernando et al [5] suggested techniques for fading in, fading

out, and dissolving MPEG-2 video clips based on

compressed domain modifications of estimated DCT

coefficients. In [6], Meng and Chang presented a

compressed video editing and parsing system, CVEPS, in

which a set of post-production stage editing effects such as

cutting, pasting, blending, film and temporal effects are

supported.

In this paper we introduce further optimized

compressed domain operations to achieve several video

editing effects specifically for motion-compensated family

of video codecs.

V 441142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

3. VIDEO EDITING IN COMPRESSED DOMAIN

Figure 1 A Generic video decoding process.

3.1. Generic Video Decoding process

This section presents a generic video decoding process, as

illustrated in Figure 1, which will then be used in later

sections to demonstrate the compressed domain techniques.

The decoder, as shown in Figure 1, receives the

multiplexed compressed video bit-stream, decodes the

variable-length coded quantized prediction error transform

coefficients, the motion vectors and the macroblock type

information. It then performs inverse quantization Q-1, to

obtain the inverse quantized transform coefficients eq:

)),,,((),,(1 QPtjieQtjie qc

−=
 (1)

where QP is the quantization parameter controlling the

compression level. These coefficients are inverse-

transformed to obtain the prediction error Ec

{ }),,(),,(1 tjieTtyxE cc

−=
 (2)

For the intra-type macroblocks, the obtained results are the

pixels of the reconstructed frame. In inter-type macroblocks,

the reconstructed pixels are computed by compensating the

motion in the reference frame R(x,y,t-1) using the motion

vectors (∆x, ∆y). The predicted frame, P(x,y,t)=R(x+∆x, y+

∆y, t-1), is then corrected by adding the decoded prediction

error Ec(x,y,t) to obtain:

),()1,,(),,(yxEtyyxxRtyxR +−∆+∆+= (3)

The reconstructed values Vc(x,y,t) can further be filtered to

obtain decoded video frames, which are then stored in the

frame buffer.

In the following sections, we develop compressed

domain techniques to achieve special video effects, namely

video blending and logo insertion.

3.2. Video Effects: Blending and Logo Insertion

Video blending is a transitional effect between two different

sequences or scenes of the same sequence by over-layering

a set of frames from both, as illustrated in Figure 1. During

transition part of two clips V1 and V2, the edited clip Ve(x,y,t)

can be represented by:

),,()(),,()(),,(2211 tyxVttyxVttyxVe αα +=
, (4)

Figure 2 Blending of two video clips.

where α1(t) and α2(t) characterize the strength of blending

for each video clip under the constraint α1(t) + α2(t)= 1.

In compressed domain video blending, there are four

different scenarios to consider depending on the coding

mode of the spatially co-located macroblocks from the two

sequences: a) both macroblocks from the first video clip and

the second one are intra-coded, b) macroblock from the first

clip is intra-coded while the one from the second clip is

inter-coded, c) macroblock from the first clip is inter-coded

while the one from the second clip is inter-coded, d) both

macroblocks are inter-coded. In the following each of these

scenarios will be described separately.

Let us consider the case when the two macroblocks

from both sequences are intra-coded, representing the

simplest of the four cases defined above.

Let eqi i=1,2, denote the quantized transform

coefficients of video clips V1 and V2, respectively, received

in the compressed bitstreams. Let eci i=1,2 denote the

inverse-quantized transform coefficients corresponding to

QPi and eqi.

It can be easily shown [3] that the transform

coefficients of the edited sequence, denoted by ec_e, are

given by:

),,()(),,()(),,(2211_ tjiettjiettjie ccec αα += . (5)

These coefficients would then be quantized and entropy-

coded to form the edited bitstream. If QP1 and QP2 are

identical, then the quantized coefficients of the edited

sequence can be directly calculated by:

),,()(),,()(),,(2211_ tjiettjiettjie qqeq αα += , (6)

Now let us consider the case, when both macroblocks are

inter-coded. The reconstruction of the macroblock for Vi is

performed as given in equation (3) by:

),()1,,(),,(yxEtyyxxRtyxV iiiii +−∆+∆+= , i=1,2. (7)

Let us start applying the editing effects at time t=t0 using

the reconstructed frames R1 and R2 of V1 and V2,

respectively. In order to avoid performing motion estimation

for the edited clip, the motion vectors of the first video V1,

(∆x1, ∆y1), will be re-used to obtain the edited video

sequence Ve represented as:

),,()1,,(),,(00110 tyxEtyyxxRtyxV eee +−∆+∆+=
Replacing the representation of the reconstructed

macroblocks in equations (4) and (7), we obtain

D
E

M
U

L
T

IP
L
E

X
IN

G

from
encoder

Inverse

Quantization

Inverse

Transform

+

Loopfilter

Frame

Memory

Motion

Compensation

motion information

Macroblock type
information

Inter

E(x,y)

+ec(i,j) eq(i,j) P(x,y)

Intra

Video Clip 1 Video Clip 2

V 442

)),,()1,,()((

)),,()1,,(()(),,(

02022202

010111010

tyxEtyyxxRt

tyxEtyyxxRttyxVe

+−∆+∆+
++−∆+∆+=

α
α (8)

Now add and subtract the term R1(x+∆x1, y+ ∆y1, t0-1) +

R2(x+∆x2, y+ ∆y2, t0-1) from equation (8), we get:

))1,,()1,,((

)),,()1,,()((

)),,()1,,(()(

)1,,(

)1,,(),,(

01120111

02022202

01011101

0112

01110

−∆+∆++−∆+∆+
−+−∆+∆+

++−∆+∆+
+−∆+∆+
+−∆+∆+=

tyyxxRtyyxxR

tyxEtyyxxRt

tyxEtyyxxRt

tyyxxR

tyyxxRtyxVe

α
α

(9)

Our aim is to define parts of equation (9) in terms of Re and

Ee so that the edited effects can be achieved by simple

manipulation of the residual transform coefficient. Define

)1,,(

)1,,()1,,(

0112

0111011

−∆+∆+
+−∆+∆+=−∆+∆+

tyyxxR

tyyxxRtyyxxRe

and

))1,,()1,,((

)),,()1,,()((

)),,()1,,(()(),,(

01120111

02022202

010111010

−∆+∆++−∆+∆+
−+−∆+∆+

++−∆+∆+=

tyyxxRtyyxxR

tyxEtyyxxRt

tyxEtyyxxRttyxEe

α
α

(10)

The approach can be generalized for video editing at in time

t>t0 to obtain Ee:

)1,,()()1,,()1(

)1,,())()1((

),,()(),,()(),,(

22221122

11111

2211

−∆+∆++−∆+∆+−
−−∆+∆+−−

−+=

tyyxxRttyyxxRt

tyyxxRtt

tyxEttyxEttyxEe

αα
αα

αα
(11)

Then the edited transform domain coefficients are given by:

)1,,,()(

)1,,()1(

)1,,())()1((

),,()(),,()(),,(

2222

1122

11111

2211_

−∆+∆+
−∆+∆+−−

−∆+∆+−−−

+=

tyjxirt

tyjxirt

tyjxirtt

tjiettjiettjie ccec

α
α

αα
αα

 (12)

where r1(x,y) and r2(x,y) denote the transform coefficients

of the motion compensated prediction blocks corresponding

to the two input video with motion vectors (∆x1, ∆y1), (∆x2,

∆y2), respectively.

Figure 3 illustrates the block diagram to achieve the

blending effect in the transform domain for two inter-coded

macro blocks. The upper and the lower part of the Figure 3

represent the two decoders which operate independently on

the video clips to generate the reference frames. Since we

utilize the motion vector of the first video for the new

sequence, note that these vectors are fed to the motion

compensation of the decoder of the second video to generate

the new residual data. The middle section the figure

represents operations to calculate the new residual transform

coefficients, Equation (12). The obtained overall data is

then quantized and the coefficients are coded and sent to a

multiplexer to generate the edited video.

The third case represents the scenario when the

macroblock of the first video clip is inter-coded and that of

the second video is intra-coded. Equation (4) can be re-

written by:

),()()),()1,,()((),,(2211111 yxEtyxEtyyxxRttyxVe αα ++−∆+∆+= (13)

Ic1 (x,y,t)

R1 (x,y,t-1)

E1(x,y)

c
i,j d

1

1(t)

2(t)

R2 (x+ x2,y+ y2,t-1)

I
c2
12

 (x,y,t)

motion information

R2 (x,y,t-1)

E2(x,y)

c
i,j

d
2

1(t-1)- 1(t)

2(t-1)

- 2(t)

e

R2(x+ x1,y+ y1,t-1)

R1(x+ x1,y+ y1,t-1)

ê

motion information

Decoded video

First Video V1

Inverse
Transform

MC
prediction

Frame
memory

Transform

Quantization

Inverse
Quantization

Edited
Blcoks

D
E

M
U

L
T

IP
L
E

X
IN

G

M
U

L
T

IP
L
E

X
IN

G

D
E

M
U

L
T

IP
L
E

X
IN

G

Transform Transform

Inverse
Quantization

Inverse
Transform

MC
prediction

Frame
memory

Decoded video

Second video V2

 Figure 3 Video blending operations between two inter-

coded macroblocks.

By applying the same steps as earlier, the transform

coefficients of the edited sequence are calculated by:

)1,,()1(

)1,,())()1((

),,()(),,()(),,(

1122

11111

2211_

−∆+∆+−−
−∆+∆+−−−

+=

tyjxirt

tyjxirtt

tjiettjiettjie ccec

α
αα
αα

 (14)

Finally, the last case represents the scenario when the

macroblock of the first video clip is intra-coded and that of

the second video is inter-coded. This case can be treated in

two different ways. In the first approach, as before, the

macroblock type of the first video clip is retained at the

output. In this case, the edited video transform coefficients

can be obtained from:

)1,,,()(

)1,,()1(

)1,,()1(

),,()(),,()(),,(

2222

1122

1111

2211_

−∆+∆+
−∆+∆+−−

−∆+∆+−−

+=

tyjxirt

tyjxirt

tyjxirt

tjiettjiettjie ccec

α
α

α
αα

 (15)

In the second approach, the same steps as in the 3rd case

may be applied with the exception that the motion vectors of

the second video clip is re-used.

As can be noted from Equations (5), (12), (14) and

(15), the edited bitstream with video blending effects is

achieved by manipulation of the residual transform

coefficients and the rest of the compressed data, such as

motion-vectors, etc would remain the same

The general video editing methods as described above

can be re-applied in several other video editing operations,

e.g., logo-insertion, fade-in, fade-out. Details can be found

in [7].

Logo insertion is a special case of the 3rd case as

described above in video blending operation, i.e., blending

two video clips with inter-macroblock and an intra-

macroblock. The main difference is that the logo will be

V 443

inserted in certain area of the image, i.e., the equation (14)

would be applied to those macroblocks where the logo is

inserted, and the macroblocks which are affected by the

insertion of the logo through motion prediction.

Widely used fade-in and fade-out effects can also

realized using the same approach as described above [7].

The main difference in this case is that we have a single

video clip under consideration. Figure 4 illustrates fade-in

operation in the compressed domain for inter-coded

macroblocks. Note the similarities between Figures 3 and 4.

)(tχ

 P(x,y)

Ic(x,y,t)

motion information

Decoded video

Compressed

bitstream

R(x,y)

Ec(x,y,t)

Inverse
Transform

MC
prediction

Frame
memory

Transform

(t)- (t-1)

(t)

Quantization

Inverse
Quantization

Edited
bitstream

D
E

M
U

L
T

IP
L
E

X
IN

G

M
U

L
T

IP
L
E

X
IN

G

Inter

macroblocks

Intra

macroblocks (t)

Figure 4 Video fade-in effect in compressed domain.

7. RESULTS

We developed a video-editing engine integrated with H.263

and MPEG-4 codecs. The platform, including the same

codecs, was also used to perform the editing operations

using the conventional spatial domain approach. We used

test sequences with different resolutions (subQCIF, QCIF

and CIF). To have an implementation independent and

content independent evaluation of the techniques, we report

the normalized execution time. Our encoder implementation

takes, on average, 4 times more processing time than the

decoder, so we assume that decoding 1 frame takes 1 unit of

time and encoding it requires 4 units.

To apply the fading effect using the proposed

algorithm, our method is based on only modifying the

residual of the original bitstream. The motion vectors and

the block types are kept unchanged as the motion

estimation, which is the most costly stage in video coding, is

omitted. The operations required in our approach for each

frame are a VLD, an inverse quantization, an inverse DCT,

motion compensation, a DCT, a quantization and a VLC.

These operations sum up to 1.7 units/frame, which is around

3 times less than the 5 units/frame needed in the

conventional approach.

Similarly, for blending two sequences in a transitional

effect, the proposed method utilizes first clip’s motion

information and updates its residual data with information

from the second video. The costly motion estimation

operation is not performed. In the suggested technique, for

the worst case scenario (when all macroblocks in the

blended frames of the sequences are coded inter), we need

to perform 2 inverse quantization, 2 IDCT, 3 DCT, 2 VLD,

1 VLC, 3 motion compensation and 1 quantization

operation per frame. These operations sum to around 3.4

units/frame of processing time, which is around 45% speed

up compared to the spatial domain approach, which requires

2 decoding and 1 encoding per frame.

TABLE I

COMPRESSED DOMAIN VS CONVENTIONAL APPROACH NORMALIZED EXECUTION TIME

Time per

block

Fading

(Number of Calls)

Blending

(Number of Calls)

 Conv. Prop. Conv. Prop.

Frame Reading 0.2 1 0 1 0

ME + MC 2.25 1 0 1 0

MC 0.15 1 0 1 0

DCT 0.32 1 1 1 3

IDCT 0.32 1 0 1 0

Quant 0.14 1 1 1 1

InvQuant 0.14 1 0 1 0

Encoder

VLC 0.28 1 1 1 1

Frame Reading 0.1 1 1 2 1

VLD 0.2 1 1 2 2

InvQuant 0.14 1 1 2 2

IDCT 0.32 1 0 2 2

Decoder

MC 0.15 1 1 2 3

Overall

Time

(Number of

calls)*(time per

block)

4.7 4.7 1.7 5.62 3.25

Conv. = Conventional Approach. ME= Motion Estimation. MC= Motion Compensation.

DCT= Discrete Cosine Transform. IDCT= Inverse DCT.

Prop. = Proposed Approach. Quant= Quantization. InvQuant= Inverse Quantization.

VLC= Variable length Coding. VLD= Variable Length Decoding.

8. CONCLUSION

We have presented novel compressed domain operations to

achieve several video editing effects specifically for motion-

compensated family of video codecs. The algorithms could

be easily extended for further video editing operations.

Results indicate that significant computational savings can

be accomplished against the brute force methods.

11. REFERENCES

[1] ISO/IEC JTC 1/SC 29/WG 11 N4350, “Information Techn. –

Coding Of Audio-Visual Objects–Part 2: Visual”, July 2001.

[2] ITU-T Recommendation H.263, “Video Coding For Low Bit

Rate Communication”, February 1998.

[3] Brian C. Smith and Laurence A. Rowe, “Algorithms For

Manipulating Compressed Images”, Computer Graphics and

Applications Vol 13, No 5, pp 34-42, September 1993.

[4] S.F. Chang and D.G. Messerschmitt. “Manipulation And

Compositing Of MC-DCT Compressed Video”, IEEE Journal on

Selected Areas in Communications: Special Issue on Intelligent

Signal Processing, 13:1-11, 1995.

[5] W.A.C. Fernando, C.N. Canagarajah, D. R. Bull, “Fade,

Dissolve And Wipe Production In MPEG-2 Compressed Video”,

IEEE Transactions On Consumer Electronics, Vol. 46, No. 3, Pp.

717-727, 2000.

[6] J. Meng and S.-F. Chang, "CVEPS: A Compressed Video

Editing and Parsing System," ACM Multimedia Conference,

Boston, MA, Nov. 1996.

[7] F. Chebil, R. Kurceren, A. Islam, U. Budhia, “Compressed

domain editing of H.263 and MPEG-4 videos”, IEEE Transactions

on Consumer Electronics, Vol. 51, No. 3, pp. 947-957.

V 444

