
PODS: PARTIALLY ORDERED DELIVERY FOR 3D SCENES IN
RESOURCE-CONSTRAINED ENVIRONMENTS

Dihong Tian and Ghassan AlRegib

Center for Signal and Image Processing
Georgia Institute of Technology
{dhtian,gregib}@ece.gatech.edu

ABSTRACT

Three-dimensional (3D) graphic scenes require considerable network

bandwidth to be transmitted and computing power to be rendered

on users’ terminals. Toward high-quality display in real time, we

propose a sender-driven mechanism for streaming 3D scenes in a

resource-constrained environment. By pre-processing the database,

objects in the scene are properly weighted upon their rendering im-

portance, and their resolutions are selected accordingly to reduce the

bit rate. Partially ordered delivery is then performed using decoding

independencies between the objects. Simulation results show the

efficacy of the proposed mechanism. For a test benchmark, for ex-

ample, the proposed algorithm outperforms the comparing heuristic

by 4 dB under a 100-KB bit rate.

1. INTRODUCTION

One category of 3D graphics applications, e.g., 3D maps, require

online navigation of large virtual environments for which replication

of the entire database at the client is not practical. Considering the

insufficient bandwidth and computing resource of the client device,

sending all 3D objects with large data dimension may not only over-

load the network, but also overload the user device when the models

are rendered. On the other hand, objects in a 3D scene are in general

with unequal importance depending on such factors as the screen di-

mension, the object coordinates, the view distance, etc. For a given

view perspective and a certain quality requirement, transmitting all

3D meshes with high tessellation and/or all textures with high reso-

lution to the device may be beyond the client’s actual need and there-

fore become unnecessary. For example, one object may be occluded

by another in the scene, or may be outside of the view space and

will be culled away in the client’s rendering pipeline. A coarse rep-

resentation for the object would be sufficient while more bandwidth

and computation can be spent on objects for which high levels of

detail (LODs) are desired. For high-quality display with optimal use

of limited resource, transmission and rendering scalability becomes

important for networked graphics applications.

Previous research on scalable coding and transmission focused

on individual 3D models [1–5] while essences of 3D scenes have

not been well addressed. As a new contribution, in this paper we

propose a joint application and transport mechanism for streaming

3D scenes under a low bit-rate and low computing-power environ-

ment. In doing so, the scene database is pre-processed at the server,

which estimates the relative importance of the objects in rendering

the scene. Based on the estimated weights, proper resolutions of the

objects are selected, and are transmitted over multiple streams using

a newly proposed IP transport protocol named SCTP (Stream Con-

trol Transmission Protocol) [6]. Performance evaluation shows that,

using the properties of 3D scenes, the proposed streaming mecha-

nism greatly improves the transmission efficiency and significantly

reduces the amount of 3D data processed by the client while preserv-

ing the quality.

The paper is organized as follows. After briefly summarizing the

background in Section 2, we present in Section 3 a distortion mea-

sure that facilitates evaluating the quality of a resolution-reduced 3D

scene. The streaming mechanism is studied in detail in Section 4,

and test results in a simulated network environment are given in Sec-

tion 5. Section 6 concludes the paper.

2. BACKGROUND

Multi-resolution coding of 3D models (e.g. [1–3]) is a partial solu-

tion to provide transmission and rendering scalability. Using multi-

resolution encoders, the server can select the appropriate resolution

for a particular client according to its quality requirement, or initially

sends a coarse representation of the 3D model to the client for quick

reconstruction and rendering, and then transmits upon necessity re-

finement layers which allow the client to increase model fidelity to-

ward higher resolutions. Multi-resolution methods are successful in

exploring the space and time efficiency of a 3D object. However,

when considering 3D scenes which contain multiple objects in the

same view space, interactions of the objects with and within the view

space need to be taken into account. Depending on the coordinates

and the view space, the objects may require different LODs to be

displayed with desired quality, or may not need to be rendered at all

if, for example, the object falls outside of the view space.

Regarding transmission, a single object requires sequenced de-

livery of the mesh stream because further decoding higher LODs

is based on successfully decoding preceding LODs. Nevertheless,

ordered delivery for multiple objects is not a requirement. Transmit-

ting multiple objects in a parallel fashion can accelerate the receiving

process as objects can be decoded independently. Unfortunately, the

long-existing transmission control protocol (TCP) and the user data-

gram protocol (UDP) provide either strictly sequenced delivery or

unordered delivery at all. A hybrid version of the two protocols [4,5]

also does not produce the desired flexibility. Although, having multi-

ple TCP connections can possibly provide partially sequenced deliv-

ery, it complicates the design of the transport layer and may violate

bandwidth fairness to other applications in the network.

The stream control transmission protocol (SCTP) [6] is a state-

of-the-art IP transport protocol which embeds ordered and unordered

delivery in one connection (called association in SCTP) and always

retains TCP-friendly congestion control and congestion avoidance.

SCTP allows separated data streams from the upper-layer applica-

tion to be multiplexed into one association, and maintains respec-

V 413142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

tively the order of data units on different streams. Thus, if one data

unit belonging to a certain stream is lost, succeeding data units from

that stream will be stored in the receiver’s stream buffer until the

lost data is retransmitted from the source. In the meantime, data

from other streams can still be passed to upper-layer applications for

prompt processing. Motivated by this property, our streaming mech-

anism proposed in this paper is built atop an SCTP-based transport

layer, which transmits 3D objects over multiple streams with prop-

erly selected resolutions. We present the detailed design of the mech-

anism and a performance evaluation in the next sections.

3. MEASURING SCENE QUALITY

One main objective of the streaming mechanism is to best preserve

the scene quality with minimized amount of 3D data processed by

the client device. To accomplish this goal, we first apply multi-

resolution coding [3] to generate, for each object, a sequence of

LODs that gradually improve the model fidelity with increased bit

rates. To evaluate the quality of the scene with multi-resolution ob-

jects, we introduce a metric derived from a weighted summation

of individual distortion measured for the objects. In the following,

we present several definitions toward the development of this novel

quality metric.

Definition 1 For two given surfaces, S and S ′, the root-mean-

square (RMS) surface distance and the maximum surface distance

from S′ to S are respectively defined as

Erms(S
′, S) =

(
1

S′

∫
S′

e2(v, S)ds

)1/2

(1)

and

Emax(S′, S) = max
v∈S′ e(v, S), (2)

where e(v, S) is the point-to-surface distance given by

e(v, S) = min
v′∈S

d(v, v′),

and d() is the Euclidean distance between two points in E
3.

Definition 2 For a geometric mesh with multiple resolutions

{M i}, i = 0, ..., L, where M0 is the base mesh and ML is the full

resolution, we define the normalized distortion of an LOD M i as

D(M i) =
Erms(M

i, ML)

Emax(M0, ML)
. (3)

The maximum and root-mean-square surface distances between

the corresponding pairs of meshes can be calculated using the fast

Metro tool [7] in practice. The metric in (3) is further extended to

measure the distortion of a 3D scene which has multiple meshes with

potential difference in rendering.

Definition 3 Given a 3D scene S with N multi-resolution ob-

jects, {M i
k}, k = 1...N, i = 1...Lk, we define the distortion of the

scene S as

Ds =
∑

M
ik
k

∈S

ωk · D(M ik
k), 0 ≤ ωk ≤ 1, (4)

and

PSNR = −20 log10 Ds (dB), (5)

where D(M
ik
k) denotes the measured distortion for mesh Mk with

resolution ik; {ωk}k=1...N are defined as normalized weight factors

to reflect the relative importance of the objects,
∑N

k=1 ωk = 1.

Viewpoint

Image plane

Fig. 1. A view frustum is defined by six planes.

4. THE STREAMING MECHANISM

A remaining challenge in the development of (4) is the determina-

tion of the weight factors. As the first component in the streaming

mechanism, we describe in the following an object weighting pro-

cess. After that, we study the proper selection of object resolutions

using a rate-distortion optimization framework. Upon transmission,

an SCTP-based transport layer is used and the selected LODs are

transmitted over multiple streams in a partially ordered manner.

4.1. Object Weighting

The weight factor of an object is expected to reflect the relative im-

portance of the object in rendering the scene. As shown in Fig-

ure 1, given a view perspective, a view frustum (VF) is defined by

six planes where two are parallel to each other. Intuitively, deter-

mined upon the coordinates, objects falling outside of the view frus-

tum will not be visible and hence have no contribution to the display

quality. Also, some objects may be partially or completely occluded

by other objects that are “in front of” them. In general, an object

closer to the viewpoint and with a smaller view angle is subject to a

higher weight of importance than an object located further away or

with a larger angle to the viewpoint.

Driven by the above discussion, our object weighting algorithm

is composed of two passes. The first step of the algorithm is to per-

form a fast view-frustum testing and its output are two sets of ob-

jects: S1
∆
= {Objects outside of VF}, and S2

∆
= {Objects within or

intersected with VF}. Apparently, we have ω(Oj) = 0 for Oj ∈ S1.

For the objects in S2, three actions are taken prior to the estimate of

the weight factors: First, the bounding volume (BV) of each object

is constructed and the center of the BV is calculated. Then, the dis-

tance between the viewpoint and the center of the BV is calculated

and used as an estimate of the distance from the viewpoint to the ob-

ject. Finally, these distances are sorted with the nearest objects first

and the centering objects first (for objects that have equal distances

to the viewpoint).

In the second pass, the image plane is uniformly divided into

h × w grids, which will be used to evaluate the coverage of an ob-

ject’s projection on the image plane. Each grid is weighted by the

reciprocal of its distance to the viewpoint, i.e.,

ωv ∝ 1

‖ v − v0 ‖ (6)

where v and v0 denote the center coordinates of the grid and the co-

ordinates of the viewpoint, respectively. Initially, all the grids are

marked as “unused for weighting”. Then, for each object in the

sorted list, a bounding volume projection map (BVPM) is generated

which, as the name implies, is the projection of the object’s bounding

volume on the image plane. The overall weight of the grids covered

V 414

(a) (b)

Fig. 2. An illustration on the projection-map based object weighting.

by the BVPM is used to evaluate the object weight. Once a grid

is counted, it is marked as “used for weighting” and becomes no

longer usable for the succeeding objects. At the end of the process,

normalization is performed so the summation of the object weights

is equal to 1. Figure 2 presents a demonstration on the projection

maps. Note that in Figure 2, each object has several partitions and

the bounding box for each partition is created, which formulates an

overall bounding volume for the entire object. When computing the

object weights, the bounding boxes for the partitions may be pro-

cessed separately in order to obtain more accurate results, and their

summarized weight will be used as the weight for the original object.

The BVPM-based method estimates the object weights with ap-

proximated coverage of the visible portions in the scene. Although,

an occlusion map [8] of the object can provide the most accurate

coverage of the visible portions, as also shown in Figure 2(b), gen-

erating the occlusion map requires processing every geometry prim-

itive, which significantly increases the computation complexity. In

contrast, the BVPM-method has light weight computation, and is

therefore preferable for timely streaming applications.

4.2. LOD Selection

The object weighting process differentiates objects into three cate-

gories: (i) objects rejected by the view-frustum test (hence ω = 0),

(ii) objects in the view frustum but assigned ω = 0, and (iii) ob-

jects with 0 < ω ≤ 1. Transmission strategies are different for the

three categories. In particular, objects in the first category will not

be transmitted while for objects in the second category only the base

representations will be sent. For objects in the third category, proper

resolutions will be selected with regard to the bit-rate constraint.

Without loss of generality, we assume a total set of N objects,

{Ok}k=1...N , that have non-zero weights, denoted by {ωk}. Each

object Ok has a number of Lk LODs and their respective distortion-

rate performance are given by {Dkj ,Rkj}k=1...N,j=1...Lk , where

Rkj is the number of bits needed for decoding LOD M j
k and Dkj

denotes the corresponding distortion, measured using (3).

We use an LOD vector π = {π1, ..., πN} to denote a set of reso-

lutions for the N objects where a resolution πk is selected for object

Ok. Apparently, each selection of π has a corresponding rate R(π)
with a resulting distortion D(π). The objective of the streaming

mechanism is to find the proper LOD vector that minimizes distor-

tion while satisfying a given rate constraint Rc, i.e.,

πopt = arg min
R(π)≤Rc

D(π), (7)

where R(π) =
∑N

k=1 Rk,πk , and D(π) =
∑N

k=1 ωkDk,πk .

To find the solution for (7), the most straightforward method is a

brute force algorithm that searches over the entire solution space.

Such an exhaustive search, however, only works under situations

where the solution space is with small or modest size, as its complex-

ity increases exponentially when the number of objects in the scene

12 3

4

5

Object index (k) 1 2 3 4 5

Object weight (ωk) 0.52 0.14 0.29 0.00 0.05

Fig. 3. The objects within the view frustum and the estimated object

weights. The 4th object is allocated a zero weight, meaning that a

base resolution will be transmitted for that object.

increases. For this reason, we employ in this paper a steepest decent

algorithm as a fast heuristic, which requires only linear computation

time. Starting from the lowest resolution for each object, the steepest

decent search is performed in an incremental fashion. At each step,

the resolution of each object is increased to a higher LOD; the ra-

tio of resulting distortion reduction over rate increment is calculated

and multiplied by the corresponding object weight. Then, the object

with the maximum ratio of distortion reduction over rate increment

is selected and its resolution is increased. This procedure is repeated

until the rate constraint is reached.

4.3. Multi-Streaming

The selected LODs for different objects are transmitted over a num-

ber of n (n ≤ N) streams using an SCTP-based transport layer.

While reliable transmission is guaranteed for all the streams, se-

quenced delivery only resides within each of the n streams. Thus, re-

ception of a particular object will not be delayed by packet losses oc-

curred in other streams, and the decoding will be performed promptly

once an LOD is received. A round-robin scheduling scheme is em-

ployed to regulate the transmission of multiple streams.

5. PERFORMANCE EVALUATION

In this section we present a preliminary evaluation on the perfor-

mance of the proposed framework, which is referred to as PODS

(Partially Ordered Delivery for 3D Scenes) hereafter. We compare

PODS with a heuristic that transmits all the objects with approxi-

mately the same LOD and in a strictly ordered machinery.

A simple benchmark containing seven objects is used in the eval-

uation, five of which are accepted by the view-frustum test. Each

object is encoded to generate ten enhancement batches. The full-

resolution objects have 39698 polygons for the HORSE model and

56192 polygons for the DINOSAUR while their lowest-resolution

counterparts have 710 and 1022 polygons, respectively. The re-

maining objects and their estimated weights are shown in Figure 3,

where for simplicity object partitioning is not performed and a single

bounding box is used for each object.

The simulation is performed using the ns-2 network simulator [9].

We consider a topology with two SCTP endpoints connected by a

bottleneck link that has a low transmission rate. Particularly, we

V 415

consider a link with transmission rate r = 384 kbps, propagation

delay d = 120 msec, packet size s = 1000 bytes, and packet loss

rate p = 0.01. Without loss of generality, the sending buffer is as-

sumed to be sufficiently large while the receiver buffer has a limited

size of χ bytes. Unless otherwise noted, we use χ = 10 KB in the

simulation. We conduct the simulation for a long period and present

the averaged results.

A comparison of the receiving quality with respect to different

bit rate constraints is first presented in Figure 4(a). One can see that

PODS significantly outperforms the comparing heuristic through the

presented range of bit-rates. For lower bit rates (Rc ≤ 100 KB),

PODs improves the receiving quality over the heuristic by 3.5–5 dB.

As the bit rate increases, PODS quickly approaches the quality close

to the full resolution (PSNR > 45 dB), and achieves a gain larger

than 10 dB compared to the heuristic.

Figure 4(b) evaluates the performance of PODS from another

perspective, where we plot for the same quality the number of poly-

gons that are processed by the client. Such an evaluation is important

as the larger number of polygons processed, the more computation

power will be consumed by the rendering operations at the client.

In Figure 4(b), it is shown that with the same receiving quality, us-

ing PODS drastically decreases the number of polygons that need to

be processed. For example, for the quality of PSNR ≈ 38 dB, the

heuristic method transmits 92900 polygons to the client while PODS

sends solely 56794 polygons, which implies a saving of 39% on the

rendering process.

To further illustrate the performance of PODS, we present in

Figure 4(c) the transmission delay for achieving 38 dB quality with

the two approaches, with respect to different sizes of the receiving

buffer. As one can expect, the saving on bit rate for PODS results in a

constant reduction in the transmission delay. In addition to the con-

stant reduction, a larger improvement is observed for PODS when

the size constraint on the receiving buffer is stringent (χ ≤ 20 KB).

This improvement is contributed by the partially ordered transport

which results in a more efficient use on the receiving buffer. Overall,

the performance evaluation verifies PODS a successful mechanism

for the studied environment which has a low bit rate and highly lim-

ited computation resource.

6. CONCLUSIONS

A streaming mechanism (PODS) has been proposed for 3D graphical

scenes. Taking in account both interactions and independencies of

the 3D objects, the proposed mechanism performs bit allocation on

the server side by pre-processing the scene database, and transmits

the selected resolutions of the objects in a partially ordered fashion.

As the result, PODS greatly improves the transmission efficiency

and reduces the processing requirement on the client, which makes

it preferable for networked graphics applications.

7. REFERENCES

[1] H. Hoppe, “Progressive mesh,” in Proceedings of ACM SIG-
GRAPH, 1996, pp. 99–108.

[2] G. Taubin, A. Gueziec, W. Horn, and F. Lazarus, “Progressive

forest split compression,” in Proceedings of ACM SIGGRAPH,

1998, pp. 123–132.

[3] R. Pajarola and J. Rossignac, “Compressed progressive

meshes,” IEEE Trans. Visualization and Computer Graphics,

vol. 6, no. 1, pp. 79–93, 2000.

�

� �

� �

� �

� �

� � �

� � 	 � 	 � � � � � � �

 � � � � � � �

� �
�� �
����

� � �
 !

� "�
#�

$ �
%

 ') � + , - . 0 1 3 0 4

5 7

8 :

8 7

< :

< 7

7 :

< : ? : @ : A : : A 5 : A < : A ? :
E F H I K L M N H O F P M H Q R T U

VW
XY
Z[\
]

^ _ a c d e g h i j k i l

m

n

o

p r

p s

t p m p t r m r t u m u t n m
v w x y { | } y ~ y w � y } � � | | y } � � � �

� �� � �
� ���

����

� � � � � � � � � � � � �

� �

� ¡

� ¢

£ ¤ ¦ ¨ ª ¬ ¯ °

Fig. 4. Comparisons between PODS and the heuristic: (a) quality

versus bit rate, (b) processing cost versus quality, and (c) transmis-

sion delay versus quality.

[4] Z. Chen, B. Bodenheimer, and F. J. Barnes, “Robust transmis-

sion of 3D geometry over lossy networks,” in Proceedings of
Web3D, 2003, pp. 161–172.

[5] G. Al-Regib and Y. Altunbasak, “3TP: An application-layer pro-

tocol for streaming 3-D graphics,” IEEE Transactions on Multi-
media, 2005, to appear.

[6] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,

T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson, Stream
control transmission protocol, Request for Comments (RFC)

2960, The Internet Society, October 2000.

[7] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: measuring

error on simplified surfaces,” in Proc. Eurographics, June 1998,

vol. 17(2), pp. 167–174.

[8] H. Zhang, “Effective occlusion culling for the interactive dis-

play of arbitrary models,” Ph.D. dissertation, Department of

Computer Science, UNC-Chapel Hill, 1998.

[9] UCB/LBNL/VINT, network simulator ns (version 2), available

on http://www.isi.edu/nsnam/ns/.

V 416

