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ABSTRACT

We study the theoretical performance of linear and non-
linear collusion attacks under the assumptions that orthogonal
or regular-simplex fingerprints are used, and that the detector
performs a linear correlation test in order to decide whether a
user of interest is among the colluders. The colluders create
a noise-free forgery by applying a mapping f to their indi-
vidual copies, and then add a noise sequence e to form the
actual forgery. They seek the mapping f and the distribution
of e that maximize the probability of error of the detector.
The performance of mappings such as linear-averaging and
interleaving can be compared in this framework. It is also
shown that impulsive noise attacks are far more effective than
Gaussian attacks.

1. INTRODUCTION

Digital fingerprinting schemes are devised for traitor tracing.
In applications such as copyright protection, the goal is to de-
ter users from illegally redistributing the digital content. Each
user is provided with his own individually marked copy of the
content. Although this makes it possible to trace an illegal
copy to a traitor, it also allows for users to collude and form a
stronger attack. One form of such attacks is linear averaging,
where the colluders average their copies and add noise to cre-
ate a forgery. Averaging reduces the power of each fingerprint
and makes the detector’s task harder. Another collaborative
attack is interleaving, where the colluders form a pre-forgery
by contributing samples from their copies and contaminating
the pre-forgery with noise. Unlike linear averaging, interleav-
ing is not a linear attack.

The averaging plus noise attack has been studied in nu-
merous works see e.g. [1, 2, 3]. But the noise model is gen-
erally assumed to be i.i.d. Gaussian. The interleaving attack
has been addressed extensively in [4] where the noise model is
still assumed to be Gaussian. One may ask whether Gaussian
noise is the most malicious noise the attackers can introduce.
This question has not yet been answered in the fingerprint-
ing literature, so it is conceivable that other types of noise are
worse.
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In our problem setup, the fingerprinting scheme is addi-
tive, and the fingerprints are chosen from an orthogonal or a
regular simplex constellation. The detector has access to the
host signal (non-blind detection) and performs a binary hy-
pothesis test to verify whether a user of interest is colluding.
The cost function in this problem is the detector’s probability
of error. The main contribution of this paper is to show that
under the attack model (1), the best strategy for the colluders
is to perform linear averaging of their copies followed by ad-
dition of a particular type of impulsive noise. This strategy
is far better than strategies that use i.i.d. Gaussian noise or
replace the linear averaging by interleaving attacks.

Throughout this paper, we use uppercase letters to denote
random variables, lowercase for their individual values, bold-
face for sequences and vectors, and calligraphic fonts for sets.
We use the symbol E to denote mathematical expectation, and
the asymptotic equality notation f(n) ∼ g(n) to indicate that
limn→∞

f(n)
g(n) = 1. We also write f(n) � g(n) to indicate

that limn→∞
f(n)
g(n) = 0, and f(n) .= g(n) to indicate asymp-

totic equality on the logarithmic scale: ln f(n) ∼ ln g(n).

2. PROBLEM STATEMENT

In this section we describe the mathematical setup of the prob-
lem, which is also diagrammed in Fig. 1.

2.1. Fingerprint Embedding

The host signal is a sequence S = (S(1), . . . , S(N)) in R
N ,

viewed as deterministic but unknown to the colluders. Fin-
gerprints are added to S, and the marked copies of the signal
are distributed to L users. Specifically, user j is assigned a
marked copy

Xj = S + Qj j ∈ {1, . . . , L},
where Qj denotes the fingerprint assigned to him.

The L fingerprints form a constellation in R
N . In our

setup, the fingerprints are equienergetic, i.e., the constellation
lies on the N -dimensional sphere with radius

√
NDf , where

Df is the embedding distortion per sample. Therefore

‖Xj − S‖2 = ‖Qj‖2 = NDf , ∀j.
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Fig. 1. The fingerprinting process and the attack channel.

For instance, the fingerprints could be orthogonal, or they
form a regular simplex [3]. In both cases, L = N .

2.2. Attack Model

Throughout this paper, we assume that the colluders know
the type of constellation from which their fingerprints were
drawn; however the orientation of this constellation is ran-
domized uniformly over the N -dimensional sphere. So the
colluders do not know their individual fingerprints. The at-
tacks are of the form

Y = f (Xk, k ∈ J ) + E (1)

where J , the coalition, is the index set of the colluding users.
The set J has cardinality K ≤ L. In this paper, we study the
case of large N , with K � L = N . It is shown in [3] that
for K >

√
N reliable detection is impossible when E is i.i.d.

Gaussian noise.
The mapping f : R

N |J | → R
N is symmetric in its ar-

guments, i.e., any permutation of the index set J does not
change the value of f . We view f as a “noise-free forgery”
(to which noise e is added to form the actual forgery, Y),
and the symmetry condition as a fairness condition: all mem-
bers of the coalition incur equal risk. We shall consider two
special instances of f satisfying the above fairness condition:
the linear averaging forgery, where the colluders average their
marked signals; and the interleaving forgery, where each col-
luder contributes N/K samples of his own copy to form the
forgery.

Moreover, in (1) we may view f (Xk, k ∈ J ) as an es-
timator of the signal S based on the copies available to the
coalition. The noise E represents an actual degradation of
the signal. It is modelled as a length-N vector drawn from
a probability distribution function (pdf) pE with zero mean.
The expected squared norm of E is∫

RN

‖e‖2pE(e)de = Nσ2. (2)

The mean-squared distortion of the forgery Y relative to the
host signal S is given by

E‖Y − S‖2 = NDc (3)

where Dc is the average distortion per sample introduced by
the coalition. Under the attack model (1), the total distortion
(3) can be decomposed as

E‖Y − S‖2 = ‖f (Xk, k ∈ J ) − S‖2 + E‖E‖2, (4)

and thus Dc ≥ σ2. The difference

Dc − σ2 =
1
N

‖f (Xk, k ∈ J ) − S‖2

represents the mean-square estimation error.

2.3. Correlation Detector

The host signal S is available at the detector and can be sub-
tracted from Y, to form the centered content Y − S. The de-
tector performs a binary hypothesis test to determine whether
a specific user’s mark is present in the forgery. We shall call
this detector focused, because it decides whether a particular
user of interest is a colluder [3]. It does not aim at identify-
ing all colluders. The focused detector above does not even
need to know K, the number of the colluders. (However its
performance depends strongly on K.)

Assume that the detector is focused on user j. Our detec-
tor compares the correlation statistic T (Y) with a threshold
τ :

T (Y) = QT
j (Y − S)

H1

>
<
H0

τ (5)

where H1 and H0 respectively denote the “guilty” and “in-
nocent” hypotheses. The decision boundary for this test is a
hyperplane normal to the vector Qj :

Ω = {Y : QT
j (Y − S) = τ}.

For mapping such as linear averaging and interleaving

f (Xk, k ∈ J ) = S + f (Qk, k ∈ J ) . (6)

Due to (1) and (6), the pdf’s of T (Y) under H0 and H1

are translations of each other, with respective means 0 and
QT

j f (Qk, k ∈ J ).
The threshold τ trades off the probabilities of false alarm

and miss PF and PM . In this paper, the threshold τ is chosen
to minimize the probability of error, assuming equal priors on
the ”guilty” and ”innocent” hypothesis.

The coalition wants to design the mapping f and the noise
pdf pE to maximize the probability of error, subject to the
distortion constraint Dc.

V ­ 406



3. LINEAR AVERAGING ATTACK

In this section we consider the linear averaging attack of a
coalition of size K, and optimize the noise pdf pE. The map-
ping f is given by

f (Xk, k ∈ J ) =
1
|J |

∑
k∈J

Xk.

The resulting mean-squared estimation error is given by

‖f (Xk, k ∈ J ) − S‖2 =

∥∥∥∥∥
1
K

∑
k∈J

Qk

∥∥∥∥∥
2

which is equal to N
K Df for orthogonal fingerprints, and to

N
K (1 − K/L)Df for simplex fingerprints.

The detector performs the correlation test of (5). It is
shown in [3] that if the fingerprints Qj are chosen from a
regular simplex constellation, then

τ =
L − 2K

2K(L − 1)
N ∼ N

2K
.

For orthogonal fingerprints, we have τ = N
2K (exactly). No-

tice that the value of the threshold τ is fixed and does not
depend on the noise pdf pE.

The coalition designs pE such that the detector’s probabil-
ity of error is maximized. Since the orientation of the finger-
print constellation is uniform on the N -dimensional sphere,
so is the direction of the vector normal to the decision bound-
ary Ω. The best strategy for the colluders under these circum-
stances is to choose an isotropic pdf pE. The magnitude r of
the noise vector E has pdf pR(r). The distortion (2) due to E
therefore takes the form∫ ∞

0

r2pR(r)dr = Nσ2. (7)

The probability of error of the detector can be expanded by
conditioning over the radial random variable R:

∫ ∞

0

Pe(r)pR(r)dr = Pe, (8)

where Pe(r) denotes the error probability conditioned on the
event ‖E‖ = r. The coalition’s program is to maximize (8)
over the radial pdf pR subject to the constraint (7). By the
fundamental theorem of linear programming, the optimal pR

is a mass distribution with support at two points only. It can
be shown (derivations are omitted here) that the first point is
at r = 0. Therefore the optimal radial pdf for the coalition
takes the form

pR(r) = (1 − ε)δ(0) + εδ(r − r0). (9)

The distortion constraint (7) implies that εr2
0 = Nσ2; simi-

larly, from (9), we have Pe = εPe(r0).

τ

r
θ
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Fig. 2. Decision boundary τ and norm r of noise vector E.

Conditioned on R = r and given the threshold τ , the
decision boundary Ω of (5) cuts a spherical cap away from
the sphere of radius R = r. Figure 2 shows the decision
boundary and the corresponding spherical cap. The half an-
gle corresponding to the spherical cap is denoted by θ, and
cos θ = τ

r . Owing to the isotropic nature of the noise, we

have Pe(r) = Ω(θ)
Ω(π) [5], where Ω(θ) is the area of the spher-

ical cap in N dimensions corresponding to the half angle θ.
The probability of error is thus given by

Pe = ε
Ω(θ)
Ω(π)

=
Nσ2

r2
0

Ω(θ)
Ω(π)

.

with cos θ = τ
r0

, where

Ω(θ)
Ω(π)

=
sinN θ√

2πN cos θ sin θ
[1 + O(1/N)] .

Hence we have

Pe ∼ N
σ2

r2
0

sinN−1 θ√
2πN cos θ

. (10)

The right side of (10) is maximized for a choice of

r0 =
√

Nτ ∼ N3/2

2K
.

The corresponding maximum value of the probability of error
is

Pe ∼ 4σ2

√
2πe

K2

N2
. (11)

Compare with the case of i.i.d Gaussian noise e = N (0, σ2IN ).
Then Pe decays exponentially with N/K2 [3]:

Pe
.= exp

{
− N

8σ2K2

}
.

Thus, the coalition can form a significantly stronger attack by
choosing impulsive noise according to (9), while incurring the
same distortion Dc = σ2 + 1

K Df .

V ­ 407



4. INTERLEAVING ATTACK

Consider the following nonlinear attack. For notational sim-
plicity, assume that N/K is an integer. The K colluders de-
sign a partition Λk, k ∈ J of the set {1, 2, · · · , N}, where
each Λk contains exactly N/K samples, and the partition Λ is
selected randomly and uniformly over the set of all such parti-
tions. The n-th sample of the noise-free forgery f (Xk, k ∈ J )
in (1) is equal to Xkn whenever n ∈ Λk. In other words,
user k’s sample is simply copied onto the noise-free forgery.
Therefore f is an interleaving operator. The mean-squared
error of this estimator (averaged over all partitions Λ) is equal
to Df . (As expected this estimator is neither better nor worse
than any individual copy Xk). Also we have

Y − S = f(Qk, k ∈ J ) + E.

The n-th output sample of f is equal to Qkn whenever n ∈
Λk.

Given the noise pdf pE, the performance of the test (5)
depends on f only via the distance between the means of the
“guilty” and “innocent” conditional distributions. (This dis-
tance was equal to 2τ = N/K for the linear averaging at-
tack of Section 3.) The most confusing case for the detector
is derived below. Given a size-K coalition J , either j or
some other user j′ is part of it. Similarly to [3], denote by
F and F′ the corresponding worst-case (closest) noise-free
forgeries; the n-th sample of their difference is given by

Fn − F ′
n =

{
Qjn − Qj′n : n ∈ Λj = Λj′

0 : else.

The conditional expectation of T (Y) given that coalition J
and partition Λ were used is given by E[T (Y)|j ∈ J , Λ]
when j ∈ J (i.e., when user j is guilty). Likewise, the con-
ditional expectation when j /∈ J (j is innocent) is denoted
by E[T (Y)|j /∈ J , Λ]. The difference of the two conditional
expectations is given by

E[T (Y)|j ∈ J , Λ] − E[T (Y)|j /∈ J , Λ]
= (F − F′)T Qj

=
∑

n∈Λj

Q2
jn −

∑
n∈Λj′

Qj′nQjn

Integrating out the uniformly distributed random variable Λ
and taking into account the fact that ‖Qj‖2 = NDf and
QjQT

k = 0 (for orthogonal fingerprints), we obtain

E[T (Y)|j ∈ J ] − E[T (Y)|j /∈ J ] =
N

K
. (12)

When simplex fingerprints are used, the right-hand side is
multiplied by a factor of L

L−1 and thus remains essentially
unchanged.

Notice that the distance (12) between the two means is
the same that was obtained when the noise-free forgery was

linear averaging. For any given pE, the performance of the
test is therefore the same.

Now recall that the mean-squared error for the “interleav-
ing estimator” f is Df , i.e., K times larger than that of the
linear-average estimator of Sec. 3. Hence if the interleav-
ing attack is to yield the same detection performance as the
linear averaging attack, it must introduce excess distortion
Df (1 − 1

K ), no matter what noise pdf pE is used. In conclu-
sion, the averaging attack outperforms the interleaving attack.

5. DISCUSSION

Our attack model (1) may be viewed as host signal estimation
(using an estimator f ) followed by the addition of a noise vec-
tor E independent of the input. Our assumptions have allowed
us to characterize the worst-case noise pdf pE for the corre-
lation detector. The worst noise is impulsive, and the perfor-
mance of the detector is dramatically worse than that obtained
under i.i.d. Gaussian noise. Also, for any choice of pE, the
detection performance depends on f via the distance between
two worst-case conditional means at the detector. The distor-
tion Dc due to the attack is the sum of the distortion due to E
and the mean-squared estimation error. The linear averaging
estimator is nearly ideal in this respect. Some improvements
may be obtained if a statistical model for S is available to the
coalition and they design an optimal estimator of S based on
these statistics. However, if S has large entropy (e.g., i.i.d.
Gaussian process whose variance is much larger than Df ),
these improvements are marginal for large K and the noise
term E dominates the estimation error.
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