
CONSTRUCTING DEPENDENCY TREES FOR RATE-DISTORTION OPTIMIZED
MEDIA STREAMING

Martin Röder1, Jean Cardinal2, Raouf Hamzaoui1

1Department of Computer and Information Science, University of Konstanz, Germany
2Computer Science Department, Université Libre de Bruxelles, Belgium

ABSTRACT

Finding adequate packet transmission strategies for me-

dia streaming systems is a challenging algorithmic task.

Recently, we proposed an efficient dynamic programming

algorithm for streams in which the dependencies between

packets, such as those prescribed between video frames

by video codecs, can be modeled with a tree. In this con-

tribution, we propose a heuristic algorithm for arbitrary

dependency graphs. This algorithm consists of first trans-

forming the dependency graph into a tree by adding de-

pendencies, and then applying the dynamic programming

algorithm on the tree thus obtained. The algorithm is both

simple and efficient, as shown by experimental results on

video sequences.

1. INTRODUCTION

A media streaming system allows the receiver to play back

a compressed media bitstream continuously after only a

short delay. The research on streaming media content over

the Internet has covered various issues, including conges-

tion control, error control, protocols, media synchroniza-

tion, and source compression. This paper focuses on error

control. Specifically, it deals with the problem of finding

efficient transmission strategies for a pre-encoded pack-

etized media bitstream within the framework introduced

by Chou and Miao [1]. This framework models the packet

dependencies with a graph, assigns an expected transmis-

sion cost and an expected reduction in distortion for each

packet, and characterizes an optimal transmission strat-

egy for the group of packets as one that minimizes the ex-

pected overall distortion for a given expected transmission

cost.

In their pioneering work, Chou and Miao [1] gave a

fast heuristic iterative algorithm called Sensitivity Adap-

tation (SA) for solving this optimization problem. Un-

fortunately, the solutions found by the SA algorithm can

be poor [2]. Optimal solutions can be computed with a

branch and bound algorithm [2]. However, the time com-

plexity of this algorithm is too high when the number of

packets is not small. Chakareski, Apostolopoulos, and

Girod [3] proposed an algorithm that is faster than the SA

algorithm, but its solutions are significantly worse. In [4],

we showed that for packets whose dependency graph is

tree reducible, optimal solutions can be computed much

more efficiently than with the branch and bound algorithm

of [2].

I
I
1

2
1P

P1

I1

2I
(a) (b)

Fig. 1. (a) Slicing in H.264. (b) Dependency graph for (a).

In many situations, however, the dependency graph is

not tree reducible. For example, the H.264 standard al-

lows to partition a frame into a number of slices which

can be decoded independently of each other. One reason

for this partitioning is to create separately decodable pack-

ets that do not exceed a certain size limit prescribed by the

network. An example is shown in Figure 1(a). The first

frame is an I-frame that was partitioned into two slices I1

and I2 to make each slice fit into a network packet. The

second frame, a P-frame, has a smaller encoded size and

contains only one slice P1. Since the P-frame is predic-

tively encoded from the I-frame, that is, from both slices

I1 and I2, we get the dependency graph of Figure 1(b),

which is not tree reducible.

For dependency graphs that are not tree reducible, we

propose an algorithm that transforms their transitive re-

duction into a tree. Then we apply the fast method of [4]

to compute optimal solutions for the tree. Our experimen-

tal results show that these solutions are almost optimal for

the original dependency graph.

2. PRELIMINARIES

The dependency between the packets that have to be trans-

mitted is modeled with a directed acyclic graph (DAG).

Let G = (V,E) be a DAG, where V is the set of vertices

and E ⊆ V × V is the set of edges. For (i′, i) ∈ E, we

say that i′ is a predecessor of i in G. If there is a path

in G from a vertex i′ to a vertex i, we write i′ ≺G i and

say that i′ is an ancestor of i and i is a descendant of i′.
We also use the notation i′ �G i if i′ ≺G i or i′ = i.
We denote the set of vertices of a DAG G by V (G) and

the set of its edges by E(G). The in-degree of a vertex

i ∈ V (G) is the number of edges that end in i. The transi-

tive reduction of a DAG G is the DAG Gt with the small-

est number of edges such that (Gt)T = GT where GT

is the transitive closure of G [5]. We call an edge (i′, i)
of a DAG G redundant if there is a path from i′ to i that

V 373142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

does not contain (i′, i). Note that the transitive reduction

of a DAG G = (V,E) is the DAG G = (V,E′) where

E′ = E \ {(i′, i) ∈ E and (i′, i) is redundant}.

A DAG T where exactly one vertex r ∈ V (T) has an

in-degree of 0 and all other vertices have an in-degree of

1 is called a tree with root r. A DAG whose transitive

reduction is a tree is said to be tree reducible.

The dependency graph of a set V = {1, . . . , L} of L
interdependent packets is the DAG G = (V,E) where the

set of edges E is given by (i′, i) ∈ E if packet i′ must

be decoded so that packet i can also be decoded. Note

that any dependency graph is equal to its transitive clo-

sure. The transitive reduction of a tree reducible depen-

dency graph G is called the dependency tree of G.

Each single packet in V can be transmitted at a given

number of transmission opportunities. The transmission

of each single packet is controlled by a policy π. Each

transmission policy π has an error ε(π), 0 ≤ ε(π) ≤ 1,

which is the probability that a packet transmitted with pol-

icy π does not arrive at the receiver on time, and a cost

ρ(π), ρ(π) ≥ 0, which is the expected number of trans-

missions of a packet transmitted with policy π.

The transmission of the set of packets V = {1, . . . , L}
is controlled by a policy vector �π = (π1, . . . , πL), where

πi, i = 1, . . . , L, is the transmission policy for packet

i ∈ V . We denote by Bi the size of packet i and by ∆Di

the expected reduction in reconstruction error if packet i
is decoded on time. Let G be a DAG with set of vertices

V . The expected cost of the transmission (the expected

rate) of V with policy vector �π is

R(�π) =
∑

i∈V

Biρ(πi) (1)

and the expected distortion with respect to G is

DG(�π) = D0 −
∑

i∈V

∆Di

∏

i′�Gi

(1 − ε(πi′)) (2)

where D0 is the distortion for V if no packet is received.

A policy vector �π∗ is optimal for a DAG G if there

exists no policy vector �π such that DG(�π) ≤ DG(�π∗)
and R(�π) < R(�π∗). A policy vector �π∗ is a convex hull
policy vector for a DAG G if there exists λ ≥ 0 such

that �π∗ minimizes the Lagrangian JG,λ(�π) = DG(�π) +
λR(�π). All convex hull policy vectors are optimal, but not

all optimal policy vectors are convex hull policy vectors.

When the dependency graph is tree reducible, we can

compute the set of all optimal policy vectors using dy-

namic programming on subtrees: optimal policy vectors

for packets in subtrees of the dependency tree are iter-

atively combined and pruned to form policy vectors for

bigger subtrees. The complexity of this method is polyno-

mial in the maximum number of policy vectors for a sub-

tree. For a detailed description of the method, the reader

is referred to [4].

3. PROPOSED ALGORITHM

If the dependency graph G is tree reducible, one can show

[4] that its dependency tree T satisfies DT (�π) = DG(�π)
for all policy vectors �π. Thus, optimal policy vectors for

T are also optimal for G (the expected rate is the same

for T and G). Since one can efficiently compute optimal

policy vectors for trees [4], our problem is solved. How-

ever, if the transitive reduction of G is not a tree (i.e., G is

not tree reducible), we usually cannot construct a tree hav-

ing the same nodes as G that satisfies the above equality.

Nevertheless, we will show that it is possible to construct

a tree T such that a policy vector that is optimal for T
does not result in a worse expected distortion when used

for G. Once this tree is available, we apply the dynamic

programming algorithms of [4] to compute optimal policy

vectors for the tree and use these policy vectors as heuris-

tic solutions for the original graph G. In the remaining of

the section, we explain how to construct one such tree.

Szwarcfiter [6] showed that a DAG is tree reducible if

and only if its transitive closure does not contain the graph

shown in Figure 2(a) as an induced subgraph. We call this

graph the forbidden subgraph. Let G be a dependency

graph that is not tree reducible. To eliminate all forbid-

den subgraphs from G, we have to decide for each pair

of independent vertices {a, b} ⊂ V (G) having a common

descendant whether we add (a, b) or (b, a) to E(G). The

choices should be compatible with G, thus not creating

any cycle. A natural way of choosing the edges to add is

using the stream order since it usually is compatible with

the dependency graph and it usually places more impor-

tant packets before less important ones. If the stream or-

der is not compatible with the dependency graph, we can

use any other compatible total order, such as one obtained

from a topological sorting of the dependency graph. Let

S be the chosen compatible order and let S(a) denote the

rank of packet a in S. If S(a) < S(b), we add (a, b). Oth-

erwise, we add (b, a). When G is connected, the transitive

reduction of the DAG resulting from these edge additions

is a tree and unique by definition. We denote this tree by

T (G, S).
Instead of eliminating the forbidden subgraphs from

the original dependency graph G, it is more convenient to

eliminate them from the transitive reduction of G. In this

way, we will not add any redundant edges, and we will di-

rectly get the tree that we are interested in. This approach

is justified by the fact that a DAG is tree reducible if and

only if its transitive reduction does not contain the forbid-

den subgraph. Indeed, if the transitive closure of a DAG G
contains the forbidden subgraph as an induced subgraph,

then the transitive reduction of G must contain exactly one

path p1 from a to x and exactly one path p2 from b to x,

but no path from a to b or from b to a. Since p1 and p2

have the same end and different beginnings, the subgraph

that is given by the union of p1 and p2 and hence the tran-

sitive reduction of G must contain the forbidden subgraph.

Conversely, if the transitive reduction of a DAG contains

the forbidden subgraph, it is clearly not a tree since the

in-degree of x is greater than 1.

After computing the transitive reduction of G, we add

an edge in a forbidden subgraph and transform the re-

sulting DAG into its transitive reduction by removing all

redundant edges from it. Suppose that we add the edge

(a, b) (resp. (b, a)) in the forbidden subgraph of Figure

2(a). Then the edge (a, x) (resp. (b, x)) will be redundant

and the forbidden subgraph becomes a chain in the transi-

V 374

a b

x

a b

x

a b

x
(a) (b) (c)

Fig. 2. (a) Forbidden subgraph. (b) Transitive reduction

of the forbidden subgraph with (a, b) added. (c) Transitive

reduction of the forbidden subgraph with (b, a) added.

tive reduction of the new DAG (see Figures 2(b) and 2(c)).

This process is repeated until all forbidden subgraphs are

eliminated, at which time we will have a tree T . Since

we only remove redundant edges, and all added edges are

between vertices that are independent and have a common

descendant, the transitive closure of T is the same as the

transitive closure of T (G, S), hence T = T (G, S).
Our algorithm for constructing a tree for an arbitrary

connected dependency graph G and a total order S com-

patible with G can be summarized as follows.

1. Compute the transitive reduction T of G, T = Gt.

2. Repeat the following steps as long as T has a vertex

with an in-degree greater than 1:

(a) Pick a vertex x of V (T) that has an in-degree

greater than 1 and pick two predecessors a and

b of x such that S(a) < S(b).

(b) Add the edge (a, b) to T .

(c) Remove all edges (x, y) �= (a, b) where x � a
and b � y from T .

The tree T that results from this algorithm satisfies

V (T) = V (G) and E(TT) ⊇ E(G). Furthermore, (2)

gives

DG(�π) ≤ D0 −
∑

i∈V (T)

∆Di

∏

i′�T i

(1 − ε(πi′)) = DT (�π),

since {(i′, i)|i′ �G i} = E(G) ⊆ E(TT) = {(i′, i)|
i′ �T i} and 0 ≤ ε(π) ≤ 1 for all policies π.

The properties of T are summarized in the following

proposition.

Proposition 1. Let G be a connected dependency graph.
Then there exists a tree T such that V (T) = V (G) and
for any policy vector �π for G, we have DT (�π) ≥ DG(�π).

The time complexity of the algorithm is O(|V (G)|2 +
|V (G)||E(G)|) since the transitive reduction of G can be

computed in O(|V (G)||E(G)|) time [7] and the number

of edges that can be added in Step 2b as well as the number

of edges that can be removed in Step 2c is bounded by

|V (G)|2.

4. EXPERIMENTAL RESULTS

In this section, we compare the proposed approach to the

SA algorithm [1] and to the branch and bound algorithm

1 (I)

2 (B) 3 (B) 4 (P)

5 (B) 6 (B) 7 (P)

8 (B) 9 (B) 10 (P)

1

6

 2 3

7

 4 5

8

9

10

11

12

13

14

15

16

17

Fig. 3. Dependency graph G1 obtained by encoding 10

frames of the Foreman video sequence with H.264. The

vertex labels show the packet numbers in stream order, the

dashed boxes indicate the frames with the frame number

relative to the first encoded frame and the frame type in

parentheses. For clarity, no redundant edges are shown.

of [2]. We used eight transmission opportunities. The time

interval between two transmission opportunities was 50

ms. The delivery deadline was set to 400 ms after the first

transmission opportunity for each packet. The network

was modeled as an independent time-invariant packet era-

sure channel with random delays [1]. The packet loss

probability of the forward and backward channels was set

to 0.2. The channel forward trip time and backward trip

time were modeled as shifted gamma distributed random

variables with rightward shifts κF = κB = 25 ms , and

parameters nF = nB = 2, αF = αB = 1
12.5 [1].

We report results for two dependency graphs that are

not tree reducible. The first one, G1 (Figure 3), consists of

17 packets obtained by encoding 10 frames (frame 13 to

frame 22) of the Foreman video sequence in CIF size with

H.264 at 318 kilobits/s with a frame rate of 25 frames/s.

The frame sequence was IBBPBBPBBP. The packet sizes

(in bytes) were (B1, . . . , B17)=(1382, 1398, 1390, 1396,

1023, 1402, 1271, 774, 547, 1394, 664, 344, 341, 1402,

600, 232, 302). The distortions were computed as in [4],

giving (D0, . . . ,∆D17) = (4042.91, 97.35, 133.11, 62.06,

71.78, 34.91, 297.09, 106.05, 399.10,400.27, 330.35,

73.56, 404.24, 404.03, 356.14, 46.99, 403.06, 403.28).

The second dependency graph G2 is the subgraph con-

sisting of the first nine packets of G1, which correspond

to the first four frames of the video sequence. The packet

sizes B1, . . . , B9 were the same as for G1. The distortions

were (D0, . . . ,∆D9) = (4022.63, 243.37, 332.76, 155.15,

179.46, 87.28, 742.73 ,265.13 ,997.75, 1000.67).

The algorithm of Section 3 computed the tree from G1

in 4.3 ms (Figure 4) and the tree from G2 in 2.8 ms.

Figure 5 shows distortion-rate curves for the depen-

dency graph G1. The curve SA corresponds to the SA al-

gorithm [1]. The curve ODP (resp. ODPT) corresponds to

the solutions obtained by applying the dynamic program-

ming of [4] without thinning (resp. with thinning) to the

tree resulting from the algorithm of Section 3. When thin-

ning was used, no more than 256 policy vectors were kept

at each intermediate result. For rates between 0 and 23000

bytes, the SA algorithm found only the policy vector with

V 375

1 (I)

2 (B) 3 (B) 4 (P)

5 (B) 6 (B) 7 (P)

8 (B) 9 (B) 10 (P)

1 2 3 4 5

6

8

9

7

10

12

13

11

14

16

17

15

Fig. 4. Tree obtained from the dependency graph G1.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10000 20000 30000 40000 50000

E
xp

ec
te

d
di

st
or

tio
n

(M
S

E
)

Expected rate (bytes)

SA
ODPT

ODP

Fig. 5. Distortion-rate curves for G1 with the SA algo-

rithm (SA) [1] and the proposed method (without thinning

in ODP, with thinning in ODPT).

expected rate 0 because it is restricted to convex-hull pol-

icy vectors. The branch and bound algorithm of [2] was

not able to compute the solutions in reasonable time. The

solutions found with our approach were generally better

than those computed with the SA algorithm. The running

times were 3.54 s for the dynamic programming algorithm

without thinning, 0.08 s for the dynamic programming al-

gorithm with thinning, and 0.02 s for the SA algorithm.

Figure 6 shows the performance of the same algorithms

for the dependency graph G2. The curve BB corresponds

to the solutions obtained with the branch and bound al-

gorithm of [2]. For most rates, the difference between the

curve BB and the ODP curves was small. Since the branch

and bound algorithm is exact, this indicates that our solu-

tions were almost optimal. The running times were 3.5

days for the branch and bound algorithm, 0.16 s for the

dynamic programming algorithm without thinning, 0.03

s for the dynamic programming algorithm with thinning,

and 0.002 s for the SA algorithm.

5. CONCLUSION

Rate-distortion optimal policy vectors can be computed

efficiently when the dependency graph of the encoded data

is tree reducible [4]. We presented a fast heuristic method

to compute policy vectors for dependency graphs that are

not tree reducible. Our method is useful when the server

cannot reencode existing packetized media data to make

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5000 10000 15000 20000 25000 30000 35000

E
xp

ec
te

d
di

st
or

tio
n

(M
S

E
)

Expected rate (bytes)

SA
ODPT

ODP
BB

Fig. 6. Distortion-rate curves for G2 with the SA algo-

rithm (SA) [1], branch and bound (BB) [2], and the pro-

posed method (without thinning in ODP, with thinning in

ODPT).

their dependency graph tree reducible. This may be the

case when the source encoder is not available, when chang-

ing the dependency graph leads to a drop in reconstruction

quality or when time constraints are imposed. The exper-

iments showed that our method provided high-quality so-

lutions, which were generally better than those of the SA

algorithm [1].

6. REFERENCES

[1] P.A. Chou and Z. Miao, “Rate-distortion optimized

streaming of packetized media”, Microsoft Research

Technical Report MSR-TR-2001-35, Feb. 2001.

[2] M. Röder, J. Cardinal, and R. Hamzaoui, “On the

complexity of rate-distortion optimal streaming of

packetized media”, Proc. DCC’04, pp. 192–201,

Snowbird, UT, April 2004.

[3] J. Chakareski, J. Apostolopoulos, and B. Girod,

“Low-complexity rate-distortion optimized stream-

ing”, Proc. IEEE ICIP-2004, Singapore, Oct. 2004.

[4] M. Röder, J. Cardinal, and R. Hamzaoui, “Effi-

cient rate-distortion optimized media streaming for

tree-reducible packet dependencies”, Proc. SPIE, vol.

6071, MMCN’06, San Jose, Ca., Jan. 2006.

[5] A.V. Aho, M.R. Garey, and J.D. Ullman, “The transi-

tive reduction of a directed graph”, SIAM J. Comput.,
vol. 1, no. 2, June 1972.

[6] J.L. Szwarcfiter, “On digraphs with a rooted tree

structure”, Networks, vol. 15, pp. 49–57, 1984.

[7] A. Goralčı́ková and V. Koubek, “A reduct and closure

algorithm for graphs”, Proc. Int. Symp. Mathemati-
cal Foundations of Computer Science, LNCS 74, pp.

301–307, 1979.

V 376

