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ABSTRACT

Sound field analysis is performed from data recorded by a micro-

phone array in order to extract some spatial information about the

sound field. In this article, the assets of the multidimensional Fourier

transform are emphasized in order to perform this analysis step. In-

deed, the finite number of microphones inevitably introduces spa-

tial aliasing, which is linked to the spectral broadening due to the

discrete and finite nature of the analysis window. First, given the

geometry of the array, the hypothesis that sound fields satisfie the

dispersion relation, obtained from the wave equation, is used to de-

sign an optimal analysis window, which minimizes spatial aliasing

according to a criterion inspired by prolate spheroidal spectral anal-

ysis. Then, several array configurations are compared to analyze

sound fields with large frequency bandwidth.

1. INTRODUCTION

Several models are used to accurately describe a sound field inside a

given domain: in Wave Field Synthesis, the sound field is described

by the Kirchhoff-Helmholtz integral equation [1], whereas it is de-

scribed as an expansion onto an orthogonal basis, such as the spher-

ical harmonics, in Ambisonics [2] or in modal reconstruction [3]. In

practice, estimating the parameters of the model by the mean of a

microphone array during a recording session is a great challenge to

be solved. Often, this challenge is circumvented by doing several

dry sound recordings of the sound scene, where the microphones are

located in the nearfield of the instruments, and then considering them

as point sources with variable directivity. In this case, the real instru-

ments and the room are replaced by physical models, which lie upon

virtual acoustics. Reverberation is treated separately. Nevertheless,

some sound reproduction systems exist, which aim at recreating a

sound field by using its property of reciprocity [4], and there is a

vast litterature on array processing, of whom some dedicated appli-

cations to sound field analysis and synthesis [5].

In this article, the sound field is modelled as an expansion onto

the plane wave basis. The analysis operator is the multidimensional

Fourier transform, giving the parameters of the expansion, and re-

quiring the ideal knowledge of the sound field on the domain of in-

terest. The synthesis operator is the inverse Fourier transform, giving

the value of the sound field at any time instant, and at any location,

and requiring the ideal knowledge of the parameters. For practi-

cal purposes, an exact estimation of the parameters is impossible,

mainly because of the finite number of microphones. Thus, a per-

fect analysis of the sound field is impossible. Nevertheless, some

processing could be made to perform an approximated sound field

analysis, which is the topic of this paper.
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In the first part of this article, the multidimensional Fourier trans-

form and the physical background concerning the propagation of

sound fields are introduced. In the second part, it is explained why

a perfect analysis is unfeasible in practice, due to the spatial aliasing

introduced by the discreteness and finiteness of the microphone ar-

ray. It is also explained that the sampled version of the sound field

is linked to its original version by convolution with a finite discrete

analysis window, and a method is given to design this analysis win-

dow in order to achieve a good tradeoff between resolution and good

focalisation of the energy inside the main lobe of the window. In the

next part, the demonstration of the efficiency of this approach is em-

phasized, and several array geometries are compared. Finally, some

concluding remarks and perspectives of this research are made.

2. SOUND FIELD MODEL

2.1. Multidimensional Fourier transform

Consider a well-behaved four-dimensionnal field p(r, t), for which

the Fourier transform exists, which is defined by:

P (k, ω) =

∫∫∫∫
(r,t)∈R4

p(r, t) e−i(k·r+ωt)d3r dt (1)

It can be viewed as an analysis operator, which decomposes

the sound field into plane waves. The associated synthesis operator,

used to reconstruct the sound field from its analysis parameters, is

nothing else than the inverse Fourier transform:

p (r, t) =
1

(2π)4

∫∫∫∫
(k,ω)∈R4

P (k, ω) e+i(k·r+ωt)d3k dω (2)

2.2. Physical background

The ear is sentitive to acoustic pressure variations by the mean of

the ear drum, so that the analysis of the acoustic pressure field seems

relevant in the domain of accurate sound field reproduction over an

extended area. The acoustic pressure field obeys the wave equation,

which takes the following form in a domain empty of sources [6]:

∇2p(r, t) − 1

c2

∂2p(r, t)

∂t2
= 0 (3)

The Fourier transform of the above equation (3) yields:(
|k|2 − ω2

c2

)
P (k, ω) = 0 (4)

Nontrivial solutions to the homogeneous wave equation are ob-

tained only if the dispersion relation ω2 = c2|k|2 is verified. This
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means that only a subset of the analysis parameters P (k, ω), verify-

ing the dispersion relation, is required to correctly represent a given

sound field. The assumption that audio signals are bandlimited to

|ω| < Ω further restricts the set of analysis parameters.

3. PARAMETER ESTIMATION

3.1. Spatial aliasing

The sound field is observed only on a set of N measure points lo-

cated by rn, which are the positions of ideal omnidirectional micro-

phones. The spatial analysis of the sound field is only possible by

means of its sampled weighted version:

pana(r, t) =
N∑

n=1

wnδ(r − rn) p(r, t) = W (r, t) .p(r, t) (5)

The time sampling of signals is not problematic, because the

number of samples is usually sufficient to avoid aliasing in the time

domain, so that it will be ignored for the rest of this document.

The product of two fields is transformed into a convolution prod-

uct in the dual domain by the Fourier transform, so that the sampled

weighted sound field is linked to the initial one by the relation:

Pana(k, ω) = W (k, ω) ∗ P (k, ω) (6)

where ∗ denotes the convolution product symbol. The analysis win-

dow is discrete and finite in space so that its Fourier transform has a

main lobe, limiting the resolution of the analysis, and also an infinity

of secondary lobes in the k−space.

The more convenient way to study the sampled sound field is to

use the following discrete inner product:

< f |g >=

∫ +∞

t=−∞

[
N∑

n=1

wnf (rn, t) wng (rn, t)

]
dt (7)

where the subscript denotes complex conjugation.

Nevertheless, the plane waves ei(k·r+ωt) no longer form an or-

thogonal set for this discrete inner product (7), whereas the orthog-

onality property was satisfied with the continuous inner product —

Fourier transform theorem. The consequence is that spatial aliasing

inevitably occurs.

In this paper, we are interested in two-dimensional arrays in the

plane (Oxy), so that the Fourier transform of the analysis window

is independent of the kz component of the vector k. This means that

any spectral information of the continuous sound field located at a

specific value of kz is copied to all values of kz due to equation (6).

The initial spectrum at pulsation ω was supposed to be non null only

on a sphere of radius |k| = ω/c. For two-dimensional projection

of sound fields, this states that the spectrum is non null only inside

a circle of radius |kr| = |kxux + kyuy| = ω/c. Nevertheless,

the location of spectral peaks gives direction of incidence of sources

up to the ambiguity between up and down, so that a tri-dimensional

spatial analysis is nearly achieved by two-dimensional arrays.

An example of Fourier transform of a two-dimensionnal sam-

pled plane wave, using the antenna displayed at the right bottom of

figure 1, with kx = ky = 0, is plotted on the left of figure 2, which

is to be compared to δ (k), the Fourier transform of the continuous

plane wave. A multitude of high-level side lobes is visible, which is

to be avoided for the purpose of sound field analysis.

3.2. Optimal analysis window

Granted that the vector k of a plane wave is linked to the incidence

direction, the broadening of the spectrum due to the convolution by

the Fourier transform of the analysis window has two effects: the

first one is that two plane waves with too near wavevectors kr1 and

kr2 can not be separated by this analysis because of the lack of res-

olution, and the second one is that the presence of too high-level

side lobes in the analysis window can hide some other spectral in-

formation or be wrongly interpretated as the presence of new spec-

tral peaks in the Fourier transform. This observation motivates the

choice of an analysis window which focus the power mainly in its

main lobe, which spread indicates the resolution of the analysis. It is

a well-known problem in the field of spectral analysis, particularly

the one based on prolate spheroidal windows [7].

According to these observations, the criterion used to optimize

the performance of the spatial analysis at pulsation ω is the maxi-

mization of the following rate [8]:

λ =

∫∫
kr∈Ckres(ω)

|W (kr) |2d2kr∫∫
kr∈Cktot(ω)

|W (kr) |2d2kr

(8)

where Ckres (respectively Cktot ) is the circle of radius |kr| = kres(ω)
(respectively |kr| = ktot(ω)). The choice of kres(ω) and ktot(ω) is

discussed further below.

The expression of λ can be reformulated into a matrix form:

λ =
wHT resw

wHT totw
with : w = [w1, . . . , wN ]T

T res (m, n) =
2πkres

rmn
J1 (kresrmn)

T tot (m, n) =
2πktot

rmn
J1 (ktotrmn)

rmn =
[
(xm − xn)2 + (ym − yn)2

]1/2

(9)

where J1 (x) is the first order Bessel function.

The maximization of λ is equivalent to the resolution of the gen-

eralized eigenvalue problem [8]:

T resw i = λiT totw i (10)

There are N generalized eigenvectors w i, but only the one cor-

responding to the maximum eigenvalue is retained: this is the opti-

mal analysis window for a given pulsation ω and for a fixed array

geometry.

The thinner the resolution is, the lower the corresponding eigen-

values λi are. The antenna dimensions condition the best achievable

resolution. In the same way, the bigger the radius ktot is, the lower

the corresponding eigenvalues are. So there is a tradeoff between

resolution and efficiency of the weighting for the choice of ktot(ω)
and kres(ω).

At pulsation ω, the spectral information of the continuous sound

field is contained inside the circle of radius klim(ω) = ω/c. Assum-

ing that all spectral information is contained in the main lobe of the

analysis window, the region of interest for the sampled sound field

in the k−space is a circle of radius klim + kres. To avoid spatial

aliasing in these conditions, the condition ktot > 2klim + kres has

to be verified, from equation (6). A good choice for the resolution is

to divide the global area in the k−domain into N equal parts, each

one corresponding ideally to the information brougth by one micro-

phone:

k2
tot = Nk2

res (11)
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4. ARRAY GEOMETRY

In the previous section, the analysis window was optimized whereas

the geometry has been fixed. In the present section, several geome-

tries are compared, such as linear or logarithmic cross arrays, circu-

lar arrays, and logarithmically-spaced circular arrays. These geome-

tries are compared in similar conditions: the arrays have the same

characterisctic dimensions Lx = Ly = 0.5m, and the same number

of elements N equal to 49. The array geometries are represented

on figure 2. At the top left corner is the linearly-spaced cross array,

which elements are uniformly spaced by 4cm. At the top right cor-

ner is the logaritmically-spaced cross array, for which each branch

contains 12 sensors logarithmically spaced between 1cm to 50cm,

plus a sensor at the center of the array. At the bottom left is the cir-

cular array, containing sensors angularly spaced by 2π/49 radians.

And at the bottom right is the logarithmically-spaced circular array,

which is constituted of 6 circular arrays of 8 sensors each, and which

radii are logarithmically spaced from 1cm to 50cm, plus a sensor at

the center. Random arrays have also been tested, with a radial distri-

bution following a normal distribution, and the angular distribution

following a uniform distribution between 0 and 2π.

Fig. 1. Array geometries used for performance tests. Linear and

logarithmic cross arrays at the top, circular array at the left bottom,

and logarithmically-spaced radii circular array at the right bottom.

4.1. Comparison between uniform and optimal analysis windows

In this part, the uniform analysis window and the discrete general-

ized prolate sequence window (DGPSW) are compared, in the case

of the logarithmically-spaced circular array, for a frequency f =
3862Hz. for this frequency, ktot = 4πf/c + kres = 166m−1,

with kres = 23.8m−1, from equation (11). The two-dimensional

Fourier transforms of the analysis windows were computed and are

displayed on figure 2. It is seen than the uniform analysis window

has a better resolution than the prolate one. On the other hand, only

9.3 percent of power is focused inside the circle of radius kres(ω)
compared to the entire energy comprised into the displayed circle.

The generalized discrete prolate spheroidal window focuses 41 per-

cent of the power at the frequency of study in the circle. Globally, it

is seen than the DGPSW is more localized in the wavevector domain

than the uniform window. These conclusions hold for all frequencies

of interest, and it is the purpose of the next paragraph to study the

frequency performance of the different types of array introduced at

part 4.

Fig. 2. 2D- spectrum of a sampled plane wave with kx = ky = 0
using a uniform analysis window at the top, and an optimal analysis

window, maximizing the energy inside the circle, at the bottom.

4.2. Comparison of performance between arrays

The geometries presented in the beginning of this part were com-

pared using optimal analysis windows, the design of which has been

presented in section 3.2. The results are represented on figure 3,

where the values of the maximum eigenvalue λmax from equations

(8) and (10) have been plotted along frequency. It is seen that the

regularly-spaced arrays have efficient performance only in a restri-

cted domain of frequencies, namely the low frequencies. At high

frequencies, the sensors are too spaced, compared to the wavelength

ν = c/f , so that no spatial information could be efficiently retrieved.

The critical value, 3400Hz for the linearly-spaced cross array, is to

be linked to the spacing between sensors. Indeed, the corresponding

wavelength is ν = 340/3400 = 0.1m which is nearly the Shan-

non limit —two points per wavelength at critical sampling— which

would have occured in the case of a uniform two-dimensional sam-

pling. The “typical” performance of a random array is also good

at low frequency and decreases with frequency. On the other hand,

logarithmically-spaced arrays achieve good performance on the en-

tire band of frequencies being studied. Indeed, sensors being located

at the center of the array are very near, thus enabling analysis of the

high wavenumbers. To study the spatial spectrum at low frequen-

cies, one needs to further space the sensors, because all the signals

would be quasi-identical if the sensors were too near, comparing to

the wavelength being studied.

4.3. Examples

Some examples of sound fields are now analyzed. In the first one,

the sound field is the sum of two plane waves of wavenumber k =
96m−1 corresponding to a frequency of 5.2kHz, with equal am-

plitudes. The plane waves are described by their wavevector k =
[k, φ, θ], in spherical coordinates, where k is the wavenumber, φ
the azimuth angle, and θ the elevation angle. The first plane wave

has a wavevector k1 = [k, π/4, π/8], and the second one k2 =
[k,−π/2,−π/8]. Note that the plane waves are tri-dimensional,

with a non null elevation angle. Their projection on the two-dimen-

sional plane of observation is k′ = [k cos θ, φ] in cylindrical co-

ordinates, yielding k′
1 = [89, π/4] and k′

2 = [89,−π/2]. These

two peaks are seen on the two-dimensional spectrum of the sampled
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Fig. 3. Performance of optimal weightings for several array geome-

tries versus frequency

plane waves, represented on figure 4. At the top left is the spectrum

of the two sampled plane waves weighted by the optimal DGPSW,

and at the top right is the spectrum weighted by a uniform window.

It is seen that the two plane waves are resolved in either two cases,

but the spectrum is more localized in the case of DGPSW than in the

case of uniform analysis window.

In the second example, two monochromatic points sources are

simulated, at the same frequency as above, with equal amplitudes.

The first one is located at r1 = [1.5, 0, 0] and the second one at r2 =
[1, π/6, 0], still in spherical coordinates. It is seen at the bottom

of figure 4 that the wavevector spectrum region excited is broader

than with plane waves: this is due to the nearfield effect. Moreover,

the component of the spectrum due to the second source is more

energetic because the source is nearer than the first source. With the

uniform analysis window, it is possible to resolve the two sources,

but the spectrum of the two sampled points sources is largely more

localized in the wavevector domain by using DGPSW, as seen at the

bottom left of figure 4.
5. CONCLUSION

In this paper, a method to perform an approximated analysis of sound

fields has been investigated. It is based upon the fact that the sampled

version of the sound field is linked to its original version by the con-

volution of a discrete analysis window. Two parameters condition

the performance of this analysis: the choice of the analysis window

and the choice of the array geometry. In this article, the analysis

window has been designed so that it focuses the maximum of energy

inside the main lobe of the window in the wavevector domain, a cri-

terion inspired by the spectral analysis based on prolate spheroidal

wave functions. Several geometries have been tested, and it seems

that circular arrays with logarithmically-spaced radii achieve the best

performance in a large band of frequencies. It is important to empha-

size that this approach overcomes the deficiencies of Ambisonics,

Wave Field Synthesis or modal reconstruction which require a very

rapidly increasing number of microphones when the frequency band

becomes larger. It is the best spatial analysis achievable, given the

number of microphones of the array. Moreover, this approach en-

ables the analysis of sound recordings performed with real arrays.

Some further studies remained to be done about the behaviour of the

window design concerning noise influence on the sensors, and also

Fig. 4. Examples of Fourier transforms of sampled sound fields. At

the top, two plane waves, and at the bottom, two close point sources.

On the left using DGPSW, on the right using uniform analysis win-

dow

about the influence of sensor location errors on the performance of

the method but it is clear that this way is promising.
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