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ABSTRACT

The Functional Transformation Method (FTM) provides a fre-

quency domain based analytic solution of arbitrary linear par-

tial differential equation. For wave field simulations however,

its application was so far restricted to simple geometries as

the FTM involves a search for the eigenmodes of the model.

Recently so called block based modeling algorithms were in-

troduced, that follow a divide-and-conquer approach. A com-

plex geometry is split into several simple elementary blocks.

These blocks are solved and discretized separately, while their

connection is realized in the discrete system during run-time.

In this paper a 2D wave field simulation program based on

block based modeling is demonstrated. Elementary block

models are solved with the FTM and can be connected to-

gether to create complex 2D geometries. The complete sys-

tem benefits from the advantages of the FTM (e.g. dispersion-

free simulations), while the complexity of the geometry fits

the needs of typical CAD drawings.

1. INTRODUCTION

For physical models given in terms of Partial Differential Equa-

tions (PDEs), the Functional Transformation Method (FTM)

provides an elegant analytic solution. In doing so, the FTM

has so far been successfully applied to physical models of

plates and membranes [1], resulting in real-time capable sound

synthesis algorithms based on physical modeling.

Concerning the simulation of room acoustics (for 2D only

a special case of the membrane model), the FTM was so far

restricted to simple geometries, i.e. rectangular and circular

regions as presented in [1]. The search for the eigenmodes of

the model, which are needed for the integral transformations

of the FTM, gets very evolved for complex geometries.

However, recently so called block based modeling meth-

ods were introduced. The complete model is split into sev-

eral blocks, which are modeled and implemented separately,

while their correct physical interaction is taken care of in the

discrete realization by a suitable interaction topology. One ap-

proach suitable for finite difference schemes and wave guide

implementations can be found in [2]. A more general ap-

proach which allows almost arbitrary modeling techniques

can be found in [3]. Its feasibility for the wave equation with

FTM block models has already been proven in [4].

Therefore in this paper a simulation tool for room acous-

tics based on block based modeling as described in [3] with

blocks modeled with the FTM as described in [1] is demon-

strated. Focusing on 2D wave fields, a brief review of the ap-

proach to block based modeling is given in section 2. The ap-

plication of the FTM to the specific block models is described

in section 3. Section 4 provides more detailed information on

the correct interaction of these block models, and the resulting

simulation tool is presented in section 5. Section 6 concludes

this paper.

2. BLOCK BASED APPROACH

The idea of block based modeling, particularly for solid re-

gions, is to apply a minimum amount of spatial sampling in

order to achieve smaller regions, which are easier to model.

The principle procedure can be seen in figure 1, where the

ground plan of a church is split into simple rectangular and

triangular blocks.

chorus

Fig. 1. Ground plan sketch of a typical Gothic church located

in Germany. The dashed lines indicate the subdivision into

rectangular end triangular block models.

A simulation tool using this block wise description has

to face two principle problems: 1) the correct physical inter-

action of the blocks has to be guaranteed, 2) the interaction

condition has to be realized in the discrete system. The so-

lution of these problems according to [3] is described in the

sequel.
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2.1. Correct Interaction

The starting point to proof correct physical interaction, is a

unified system description as done in [3]. As the physical

model is described by a set of linear PDEs, one can always

introduce additional auxiliary variables to formulate a set of

PDE with first order spatial derivatives only. Combining all

variables in the vector of outcomes y = y(�x, t) one can de-

scribe the set of first order PDEs by one vector PDE with first

order derivatives in space and time only

Ay + B∇y + C
∂

∂t
y = fe(�x, t) , (1)

with ∇ denoting the gradient, resp. the divergence, applied

on the elements of y, and space coordinate �x ∈ V , and time

t ∈ [0,∞[. Each i-th block model, with �x ∈ Vi, can be de-

scribed in the form of equation (1) with block-specific system

matrices Ai,Bi, and Ci and its specific excitation fe,i(�x, t).
For a correct physical interaction of two models, there

must also be a description in the form of equation (1), that

describes the combined model with V = V1∪V2∪∂V , where

∂V is the connection region of V1 and V2. Within V1 and V2,

existence of a description in the form of equation (1) is guar-

anteed by the block models themselves, but at the connec-

tion region is has to be guaranteed by the interaction topol-

ogy. In detail, one has to assure the existence of ∇y(�xb, t)
for xb ∈ ∂V .

In doing so, one has to differentiate between the compo-

nents normal to the boundary (indicated by the normal vector

�nb), and those in line with the boundary. For the existence

of ∇y(�xb, t) only the continuity of the normal component,

i.e. �nby(�xb, t), is necessary as continuity in line with the

boundary is guaranteed by the block models. In detail, one

has to assure that left-side and right-side boundary value in

∂V is identical

lim
x1→xb

y1(x1, t) = lim
x2→xb

y2(x2, t) . (2)

Equation (2) itself is fulfilled by the definition of suitable

boundary conditions, which serve as the inputs to the system

(the normal component of the particle velocity in this case),

and the definition of suitable output- variables (the pressure

at the boundary in this case). Details to the definition of the

boundary conditions and the outputs can be found in [4], here

it remains to mention, that a correct physical interaction is

assured if pressure p(�xb, t) and normal component of the par-

ticle velocity �nb�v(�xb, t) are equal for the connected block

models, and this for all points �xb ∈ ∂V .

2.2. Discrete Realization

In consequence, the physical interaction of the block mod-

els can be traced back to a network with pairs of physical

variables (pressure and normal component of particle velocity

here), that have to fulfill the so called Kirchhoff rules. These

networks correspond to electrical networks, which are well

understood and where methods for discrete solutions are well

known.

One of these methods for discrete solution is quite of in-

terest in this context, as it preserves the spatial structure of

the original model (the connection of blocks) in the discrete

system. This method are the Wave Digital Filters (WDFs) [5],

that avoid realization problems due to delay free loops via the

definition of so called wave variables. These wave variables

are causal in the sense, that the reflected wave b is always a

response to the incident wave a, in contrast to voltage v and

current i. In discrete implementations, this causality of the

waves variables is reflected in one sample delay between in-

cident and reflected wave.

However, the usage of wave digital filter principles in-

volves, that the complete modeling and discretization process

is done using these principles. In this paper, the FTM should

be used to model and discretize the block models, which is

not based on WDF principles. A solution of this problem

is a recently introduced technique for the interconnection of

arbitrary discrete state space structures with wave digital fil-

ters referenced in [3]. With a slight modification of the block

models discrete structure, connection of FTM blocks to the

WDF interaction topology is possible.

3. FTM BLOCK MODELS

The application of the FTM for 2D problems is well docu-

mented in [1]. Here a very short review of this process is

given with respect to the block based modeling approach.

3.1. Model Description

The physical model for acoustical wave propagation is the

well known wave equation, which is based on the two follow-

ing physical principles

−
∂

∂t
p(�x, t) = �0c

2∇�v(�x, t) equ. of continuity

−∇p(�x, t) = �0

∂

∂t
�v(�x, t) equ. of motion ,

where c is the speed of sound in the air and �0 is the mass den-

sity of air. This two partial differential equations can be easily

combined to one vector partial differential equation according

to equation (1) with the vector of outcomes

y(�x, t) :=
(

p(�x, t) −�0�v(�x, t)
)T

. (3)

According to the interaction conditions from section 2.1, we

define vb(�xb, t) := −�0�nb�v(�xb, t) to be the inputs of the

model, and we solve for the pressure p(�xb, t) with �xb ∈ ∂V .
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3.2. Solution with the FTM

Details on the application of the FTM can be found in [1],

an overview of the procedure is given in figure 2. The start-

ing point is a linear PDE, for instance given in the form of

equation (1), with suitable Boundary Conditions (BC), here

defined according to section 2.1, and suitable Initial Condi-

tions (IC), here homogeneous.

L{·} T {·}PDE

IC, BC

PDE

BC

transfer

function

transfer function

discretediscrete Z−1 {·}
systems
recursive

solution

T −1 {·}

discretization

Fig. 2. General procedure of the FTM for solving initial

boundary value problems in form of PDEs with initial- (IC)

and boundary (BC) conditions. The transformations are ex-

plained in the remainder of this section.

The Laplace transformation (L{·}) yields a PDE in space

only, as all temporal derivatives are replaced by powers of the

time-frequency variable s. The following problem specific

Sturm-Liouville Transformation (SLT, T {·}) acts similar on

the spatial derivatives, resulting in a transfer function, both

in time and space frequency domain. Discretization with the

impulse-invariant transformation, inverse Z-transformation,

and inverse SLT yield the desired discrete solution in terms of

weighted complex first order recursive systems.

vb(�xb, kT )

p(�xb, kT )

z−1

z−1

e
−β1T

e
−βN T

c1

cN

b1

bN

Fig. 3. Structure of the FTM implementation with N complex

harmonics. Explicit values for the input weighting constants

bn and output weighting constants cn can be found in [1].

The resulting structure is depicted in figure 3. T is the

sampling interval and k denotes the discrete time step. Each

first order resonator with frequency βµ represent one eigen-

mode of the system. These eigenmodes are weighted and

summed, yielding the desired output. Both, eigenfrequency βµ

and weighting constants cµ depend on the PDE and on the

geometry of the model. So far analytic solutions for rectan-

gular, circular, and triangular regions are available. The input

weighting constants bµ depend on the position and type of

excitation, details can be found in [1].

4. INTERCONNECTION

Some specific information about the connection of the dis-

crete block models realization from the previous section are

given here.

4.1. Interacting Spatial Harmonics

One problem which is also addressed in-depth in [4], is to

guarantee the interaction condition for all boundary points

�xb ∈ ∂V , i.e. an infinite number of interaction points. One

approach would be to choose a finite number of equally spaced

interaction points, however a more reasoned one is provided

by the FTM solution. The number of eigenmodes is always

finite (N in figure 3), as the eigenfrequencies are limited by

the Nyquist frequency. Instead of performing the complete

inverse SLT by a weighted sum (see figure 3), one could real-

ize the interaction of the block models via interacting spatial

harmonics. On one hand this approach yields always a finite

number of interacting variables, and on the other hand it is

more efficient, as less multiplications are required to realize

the interaction.

4.2. Discrete Realization with WDF Principles

As already mentioned in section 2.2, the structure from fig-

ure 3 is slightly modified in order to fit to the wave digital in-

teraction topology. The modified system uses wave variables

as in- and outputs. The interaction of these wave variables

is realized with so called port adaptors (see [5]), however in

this scenario, it is assumed that the speed of sound is identi-

cal for both models, what simplifies these adaptors to simple

bridging elements.

5. SIMULATION PROGRAM

The complete algorithm, i.e. the block models from section 3

and the discrete realization of the interaction topology ac-

cording to section 4 is realized in a simulation tool called

“Wave2D”. Each block model is an object of the same class,

so it is possible to simulate an almost arbitrary number of

blocks. Possible block geometries are rectangles, circles, and

triangles, their arrangement as well as all other program and

model parameters can be saved in special script-files. The

wave fields are visualized in 3D with hardware supported ren-

dering interfaces.

Two screenshots with the “Church”- example can be seen

in figure 4. Although more than 169m2 are simulated with a

frequency range up to 11kHz, almost 4 frames per second are

calculated and depicted on a Pentium IV with 2.8GHz. Videos

of the simulations produced with “Wave2D” and further ma-

terial can be found online [6].

Another example is depicted in figure 5. The FTM en-

ables the exact positioning of sources (loudspeakers) and out-
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Fig. 4. Impulse propagation in a church simulated with

“Wave2D”. Complete videos can be found in [6].

puts (microphones), so that advanced multichannel reproduc-

tion algorithms could be tested. See [6] for details.

Compared with more popular methods for the simulation

of room acoustics, wave digital meshes for instance (see [7]),

the proposed approach offers almost the same number of frames

per second for comparable scenarios. However, it provides

much more accuracy, as the FTM simulations are completely

free of dispersion and as the FTM allows exact positioning of

sources and outputs.

6. CONCLUSIONS

In this paper the feasibility of the FTM for the simulation

of room acoustics has been extended with the help of block

based modeling techniques. In doing so a minimum amount

of spatial sampling is applied to the room geometry, by split-

ting the room into blocks that are manageable with the FTM.

These blocks are solved with the FTM and realized separately

as different objects in the simulation tool. Their correct in-

teraction is assured by the program with the usage of wave

digital filter principles. A program was presented that real-

izes the proposed approach and visualizes the resulting wave

fields with smooth animations. The approach offers accurate

and fast simulations for geometries with a reasonable amount

of complexity.

Fig. 5. Simulation of multichannel reproduction systems.
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