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ABSTRACT

Simple active noise-canceling systems (such as noise canceling head-

phones) use a feedback mechanism whereby the signal recorded by
microphone placed near the loudspeaker is phase-inverted and sent

back through the loudspeaker via a feedback filter. Such systems
can be implemented using analog circuitry, are fairly inexpensive,

and achieve reasonably good performance at low frequencies (below
500Hz). The feedback filter is designed to achieve a high gain at

low-frequencies (for best noise reduction) while maintaining closed-
loop stability under various conditions. To design the feedback filter,

fairly ad-hoc techniques were traditionally used under the broad de-
nomination of ”loop-shaping” until the advent in the 80’s of optimal

H∞ algorithms. The design technique outlined in this paper shares
the intuitive approach of traditional loop-shaping methods, but re-

moves most of the guess-work while producing optimal filters that
guarantee closed-loop stability. The main idea is to represent the

filter in the cepstral domain, where gain and phase constraints take
a convenient linear form, and use linear programming to design the

optimal feedback filter.

1. INTRODUCTION

The past few years have seen an increasing interest in active noise

attenuation, particularly as it applies to noise-canceling headphones.
Many manufacturers now offer low-to-medium price headsets equip-

ped with active noise attenuation and a few papers have appeared
that give fairly detailed descriptions of such setups [1, 2, 3, 4]. Be-

cause of cost and battery-life issues, most if not all noise canceling
headsets use analog circuitry to implement a negative feedback al-

gorithm. The headset loudspeaker is used to send the normal audio
signal as well as the ”secondary path” feedback signal responsible

for the noise attenuation. A microphone is placed near the loud-
speaker and its output is filtered by a feedback filter C(z), phase

inverted and sent back to the loudspeaker, forming a feedback path
as depicted in Fig. (1). The amount of noise attenuation achieved
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Fig. 1. Typical negative feedback ANR setup and equivalent sig-

nal flow. P (z) represents the electro-acoustic path and C(z) is the
feedback filter.

by the system is given by the magnitude of the so-called ”sensitivity

function” [5]:

S(z) =
1

1 + C(z)P (z)
(1)

in which P (z) is the ”plant” (in control theory parlance) i.e., the

electro-acoustic path between the input of the loudspeaker and the
output of the microphone, and C(z) is the feedback filter (the ”con-

troller” in the control theory literature). S(z), also called the closed-
loop transfer function is the transfer function between points A and

B. Eq. (1) shows that good noise attenuation is achieved when
C(z)P (z) has a large gain, but because S(z) is an IIR filter, its sta-

bility isn’t guaranteed. As we will see, too large a gain for C(z)P (z)
usually yields an unstable S(z) and the design of the feedback fil-

ter C(z) for a given plant P (z) involves a tradeoff between perfor-
mance on the one hand, and stability and robustness to variations of

P (z) on the other.
Historically, feedback filters were designed using an iterative ad-hoc

procedure called ”synthetic loop-shaping” [6, 7] consisting of pro-
gressively adding lead and lag compensators to the feedback filter,

making sure closed-loop stability was preserved. The Nyquist crite-
rion [7] was typically used to check closed-loop stability, and the re-

sulting feedback filter was, in most case, suboptimal. Some amount

of robustness to ”plant variation” (variations in P (z) resulting from
changes to the physical setup - for example taking the headset off

the head) was obtained by using phase and gain margins in the de-
sign [5]. During the 80’s, H∞ robust control techniques were intro-

duced [8, 9] which provided a solid basis for the design of optimal
or near-optimal feedback filters, and robustness was characterized

in a more accurate manner that was previously possible [5]. The
two main techniques (the model matching [8] and state-space [9]

formulations) however, have several drawbacks. They are complex,
require a model (either a rational transfer function or a state-space

model) for the plant P (z), depend on the careful selection of two
rational weighing transfer functions to achieve good performance

and robustness and can produce very high-order filters [1]. Nonethe-
less, H∞ control theory has been put to good use in the context of

noise-canceling headsets (see for example [4]). The alternative filter
design technique presented in [1] has several advantages: the filter

order is selected in advance and there is no need for a model of the
plant (the technique works from direct experimental measurements

of the headset). Furthermore, robustness is easily incorporated in the
algorithm, and the technique allows a direct control of the perfor-

mance tradeoff between good noise attenuation in low frequencies
and noise amplification at higher frequencies (the usual ”waterbed”

effect [5] inherent in non minimum-phase plants). Unfortunately,
because the solution is obtained via a non-linear constrained opti-

mization technique, the algorithm only finds local minima and there
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is a possibility that a filter exists that achieves better performance.

The design technique presented in this paper fits the broad category
of ”loop-shaping” techniques in the sense that the algorithm focuses

on the characteristics of the open-loop filter C(z)P (z) (as opposed
to the sensitivity function S(z)). The algorithm yields a feedback

filter C(z) that achieves the best noise rejection (in the H∞ sense)
in a specified frequency area, while maintaining closed-loop stabil-

ity. As in [1], the algorithm does not require a plant model, and
uses direct frequency-domain measurements of the plant. Robust-

ness to plant variations is achieved either by use of traditional gain
and phase margins, or by using several sets of measurements that

correspond to various positions of the headset, or by a combina-
tion of the two. The key to the design is to express the feedback

filter C(z) in the cepstral domain, where magnitude and phase con-
straints can be expressed linearly in terms of the unknown cepstral

coefficients. The design then translates into a convex optimization
problem which can be solved by fast and well known algorithms,

producing a unique optimal solution. For practical implementations,
the resulting filter must be transformed in a subsequent stage into an

analog filter (B(s)/A(s)), which can be done using straightforward
filter transformation techniques [10]. The second part of this paper

briefly summarizes the theory of negative feedback systems. The
third part presents the optimal design technique, and the fourth part

concludes with a design example.

2. NEGATIVE FEEDBACK ANR

Fig. (1) above presents a typical setup for negative feedback Active
Noise Reduction. It is easy to see that the transfer function between

the incoming noise (point A) and the attenuated noise (point B) is
given by Eq. (1) above. Because S(z) is an IIR filter, stability is

an issue. In general, it is not easy nor simple to derive a condition

on the open-loop filter P (z)C(z) to guarantee the stability of S(z).
However, the Nyquist stability theorem provides an answer. It can

be shown [11] that the closed-loop filter S(z) is stable if the Bode
plot of the open-loop filter P (z)C(z) does not encircle the z = −1
point in the Z-plane (the Bode plot of a filter L(z) is obtained by
plotting the complex L(z) for z = exp(jω) for 0 ≤ ω < 2π). A

simple and traditional [7] design strategy derived from the Nyquist
criterion consists of making sure that the magnitude of the open-loop

filter L(z) is lower than 1 when its phase crosses −π. It is easy to
see that if this is true, the z = −1 point is never encircled by the

Bode plot. Note however that this design strategy is not a necessary
condition for closed-loop stability.

3. OPTIMAL DESIGN TECHNIQUE

3.1. Design template

The design strategy discussed above can be expressed in a way that

is reminiscent of the Parks McClellan FIR filter design algorithm.
Let us assume for simplicity that P (z) = 1, we will see later that

accounting for non-unity P (z) is easy. One can create a template
characteristics that represents the expression to be maximized and

the constraints to be satisfied as a function of frequency, as shown
in Fig. (2). In the H∞ framework, we seek to maximize the min-

imum amplitude response Amin (to achieve maximum noise reduc-
tion) over a designer-specified low frequency region (up to frequency

F0) while the phase is constrained to remain above −π. We con-
strain the amplitude to reach a negative dB level at frequency F1, at

which point the phase is allowed to dip below −π, which ensures the

stability of the closed-loop filter. As with the Remez exchange al-

gorithm, there can be ”don’t care” regions where we allow the filter
response to be essentially free. Given our design strategy, the ques-

tion is: is there a global optimum, and what algorithm can be used
to determine it?
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Fig. 2. Design template for the open-loop filter C(z). The goal is

to maximize the minimum open-loop gain Amin while satisfying the
magnitude and phase constraints.

3.2. Using the cepstral domain

Because the design objective and constraints affect both the magni-
tude and phase of C(z), it is natural to express C(z) in terms of

its (complex) cepstral coefficients. Given an impulse response c(n),
the cepstral coefficients of the filter are obtained by computing the

Fourier Transform of c(n), taking the complex logarithm of the re-

sult, and then the inverse Fourier Transform [10]. In other words,
the cepstral coefficients ĉ(n) are the inverse Fourier transform of the

logarithm of the filter’s frequency response:

∞∑
n=−∞

ĉ(n)e−jωn = log(C(ω)) = log |C(ω)| + j � C(ω) (2)

where C(ω) represents the complex-valued frequency response of
the filter. Eq. (2) shows that both the filter’s log-magnitude frequency

response and the filter’s phase response are linear functions of the
filter’s cepstral coefficients. A practical constraint is that the filter

c(n) should be causal. If we further constrain c(n) to be minimal-
phase, then this is equivalent to constraining the cepstral coefficients

to be right-sided [10], and the sum above to be restricted to positive
values of n. We will say more about that later.

3.3. Linear programming

Our design task now consists of maximizing a linear function of the

unknown parameters ĉ(n) (the filter’s low-frequency gain), subject
to constraints that are also linear in the unknowns (constraints on

the phases and the magnitudes above F1). This is a standard convex
optimization problem for which there is either no solution, a unique

global maximum or an infinity of maxima, and the well-known linear
programming algorithm [12] can be used to compute the solution(s).

One form of the linear programming (or ”simplex”) algorithm max-
imizes the expression

at.ĉ subject to the constraints B.ĉ ≤ c (3)

where ĉ is a vector containing the N unknown parameters ĉ(n), a is
a N × 1 vector, B is a L×N matrix expressing L linear constraints

and c is a vector used in the constraints. Here, we use the short-hand

V  310



notation that x < y if and only if xi < yi for all the components of

vectors x and y. The linear programming optimization technique fits
our design problem very well: We wish to maximize level Amin on

Fig. (2) under the constraint that the filter’s log-magnitude response
should be above Amin in the frequency range [0 F0], should be

below 1 in the frequency range [F1 Sr/2], (Sr is the sampling fre-
quency) and the phase response should be above −π in the frequency

range [0 F0]. To express this in matrix form, we need to discretize
the frequency axis: we define M frequency points ωk = kπ/M be-

tween 0 and π (although the sampling needs not be uniform), and
the inverse Fourier transforms used to calculate the magnitudes and

phases from the unknown cepstral coefficients are expressed in a ma-
trix form as

|C(ωk)| =

N−1∑
n=0

ĉ(n) cos ωkn =

N−1∑
n=0

ĉ(n)Ck
n

� C(ωk) =

N−1∑
n=0

−ĉ(n)sinωkn =

N−1∑
n=0

ĉ(n)Sk
n (4)

The linear programming setup of Eq. (3) is used, with the following
parameters:

ĉ = (Amin, ĉ(0), ĉ(1), ..., ĉ(N − 1))t
(5)

a = (1, 0, 0, ..., 0)t
(6)

B =
[
Bpass|Bstop|Bphase

]t

(7)

c =
[
cpass|cstop|cphase

]t

(8)

where Bpass, Bstop and Bphase are the constraints related to the

magnitudes in the passband, in the stopband, and the phases in the
passband. Specifically:

Bpass
i =

(
1,−Ci

0,−Ci
1, ...,−Ci

N−1

)
and

cpass = (0, 0, ..., 0)t
for 0 ≤ i < L0 (9)

Bstop
i =

(
0, Ci

L1 , Ci
L1+1, ..., C

i
N−1

)t

and

cstop = (g, g, ..., g)t
for 0 ≤ i < M − L1 (10)

Bphase
i =

(
0,−Si

0,−Si
1, ...,−Si

N−1

)t

and

cphase = (α, α, ..., α)t
for 0 ≤ i < L1 (11)

in which L0 and L1 are the indexes corresponding to frequencies F0

and F1 in Fig. (2). Note that the added dummy unknown Amin in ĉ,
allows us to maximize the minimum gain below F0. This a standard

technique for min-max optimization. It is easy to verify for example
that Bpass

i .ĉ < cpass ensures that the filter’s magnitude frequency

response will be above Amin in the passband below frequency F0.
In the equations above, g is the gain margin and should be such that

g < 1, and α is the phase margin and should be such that α < π.
Adding gain and phase margins is a traditional way to ensure some

amount of robustness. We will see below that there is another way.
Note that the design template isn’t restricted to piecewise constant

constraints. Any arbitrary frequency-dependent function can be used
both in the area where the magnitude is to be maximized and in the

constraints. The linear programming algorithm (for example, the lin-
prog function in matlab) is then run using the above setup and yields

the usually unique set of cepstral coefficients ĉ(n) that maximizes
the passband minimum gain Amin while satisfying the required con-

straints on the magnitudes and phases. Once the cepstral coefficients

ĉ(n) are obtained, the impulse response c(n) is calculated by an in-

verse cepstral transform, for example using the recursion [10]:

c(n) =

⎧⎪⎨
⎪⎩

0 for n < 0

exp(ĉ(0)) for n = 0
1
n

∑N−1
k=0 kĉ(k)c(n − k) for n > 0

Note that even though ĉ(n) has a finite length, the impulse response
c(n) is IIR.

3.4. Adding the contribution of the plant P (z)

In the discussion above, we assumed that P (z) = 1 which of course
is never true in practice (if only because of the acoustic delay be-

tween the loudspeaker and the microphone). Because we design
C(z) in the cepstral domain, the cepstrum of C(z)P (z) is simply

the sum of the two cepstrums. We can simply measure P (z), then
calculate its magnitude and phase spectra and modify our constraints

in Eqs. (11) to account for the contribution of P (ω). For example,
cphase would now read:

cphase = (α + � P (ω0), α + � P (ω1), ..., α + � P (ωL1−1))
t

In addition, robustness to plant variations can be achieved by includ-

ing additional measurements of the plant P (z), for example when
the headset is off the user’s head. At each frequency ωi, the smallest

measured � P (ωi) would be used in the equation above, to guaran-
tee stability in the worst scenario. The same holds for magnitudes:

the vector cstop would need to be modified to include the largest
(worst case) gain contributed by P (ω). Including multiple measure-

ments into the constraints provides a simple way to account for ex-
pected real-world plant variations. This stands in contrast with H∞
robust control where robustness is guaranteed via the use of a ratio-
nal weighing transfer function W2 that must be carefully adjusted

[5].
As mentioned above, we added the constraint that filter c(n) be min-

imum phase as a way to ensure its causality, and one can question

whether this artificial constraint hurts the optimality of the solution.
However, it is easy to see that if a causal filters c(n) satisfies the

design constraints and achieves a minimum passband gain of Amin,
its equal-amplitude minimum-phase equivalent will also satisfy the

constraints (because its phase response will be larger or equal to that
of c(n)) and achieve the same gain. If the solution of the problem is

unique (which is normally the case), we can conclude that the opti-
mal causal solution has to be minimum-phase.

4. PRACTICAL CONSIDERATIONS, RESULTS AND
DISCUSSION

Contrary to what happens in standard filter design tasks, increas-
ing the number N of cepstral coefficients ĉ(n) does not necessarily

yield better results. This is because the phase constraint in Fig. (2)
prevents the filter from exhibiting too sharp a transition between the

passband and the stopband, regardless of its length. When the num-
ber N of cepstral coefficients is increased beyond a certain limit, the

results remain the same.
We now present a practical design example for a case where P (z) is

a 125µs delay corresponding to a distance of about 4.1cm between
the microphone and the loudspeaker. The sample rate is 16kHz. The

constraints are shown as dashed lines on Fig. (3), and the resulting
filter is shown as a solid line. The constraints were slightly offset ver-

tically in the figures, for the sake of clarity. The design concentrates

V  311



the attenuation between 0 and 400Hz with a maximum at 140Hz. F1

is set to 1500Hz, a phase margin α of about π − 0.12π was used,
as well as a gain margin g of 15dB. We used N = 256 cepstral

coefficients and M = 300 frequency sampling points. As is usu-
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Fig. 3. Design template (dotted line) and resulting optimal magni-

tude and phase responses (solid lines).

ally the case in linear convex optimization, the optimum meets some

of the constraints: the filter’s responses touch the design boundaries
at some frequencies. Finally, Fig. (4) presents a 6th-order (3 pairs

of complex conjugate poles and 3 pairs of complex conjugate ze-
ros) rational approximation of the filter of Fig. (3) obtained by the

Steiglitz-McBride algorithm (the stmcb() function in Matlab. As ex-
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Fig. 4. 6th-order rational approximation of the design of Fig. (3).

pected the rational transfer function is no longer guaranteed to sat-

isfy the constraints, and indeed, its magnitude response slightly cuts
the constraint around 1.5kHz, but because of the gain margin, the

closed-loop filter is still stable. In all other respects however, the fil-
ter performance is practically identical to its FIR counterpart. This

confirms that the design technique presented here only provides an
approximate sub-optimal solution to the problem of fixed-order con-

troller design. Note however that provided the order is large enough,
the solution is very close to the optimal filter.

The constraints described in this paper correspond to H∞ optimiza-
tion (in the sense that we maximize the smallest loop gain in the

desired frequency range), but could easily be modified to maximize
the sum of the loop log-magnitudes in the frequency range instead,

because the domain of acceptable filters (i.e., filters that yield stable
sensitivity functions S(z)) is convex. Convexity guarantees that the

maximum is global (if it exists) and can be obtained by well-known
linear programming algorithms. Finally it is worth mentioning that

the choice of F1 (the frequency where the phase is allowed to cross
−π) is somewhat arbitrary, and different values will yield different

filters with better or worse performance in terms of the achieved
value of Amin. With respect to the ultimate goal of maximizing noise

attenuation over a frequency range while maintaining closed-loop

stability, having to choose F1 is an unnecessary constraint. Because

the design procedure is fairly rapid, it is not unreasonable to imagine
testing a range of values for F1, then selecting the value that yields

the best filter (the largest value for Amin).

5. CONCLUSION

The main advantages of the technique presented in this paper are
its simplicity and its ability to yield truly optimal filters in the min-

max (H∞) sense. As in [1], direct measurements of the headset
can be used without additional modeling stages, and robustness to

plant variation is accounted for in a very intuitive and realistic man-
ner. The design algorithm can incorporate the traditional loop shap-

ing concepts of gain and phase margins and provides the designer
with intuitive parameters such as passband gain and bandwidth to

achieve the desired noise reduction performance, getting rid of most
of the guess-work. One drawback of the algorithm is that it does not

provide an optimal solution for fixed-order feedback filters. Find-
ing fixed-order H∞ optimal controllers is still an unsolved problem

[13].
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