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ABSTRACT

A narrowband feedforward active noise control (ANC) system

consists of an adaptive filter excited by the sum of multiple

sinusoids corresponding to the harmonic frequencies of the primary

noise. The convergence of this direct-form ANC system is 

dependent on the frequency separation between two adjacent

sinusoids in the reference signal. The analysis also proves that the

length of the adaptive filter required for achieving the same 

convergence speed decreases with an increase in frequency

separation. Computer simulations are conducted to verify the 

analysis presented in the paper.

1. INTRODUCTION 

In many practical ANC applications [1, 2], the primary noise 

produced by rotating machines, such as engines, is periodic and 

contains multiple harmonic-related narrowband components. In 

these applications, the reference microphone can be replaced by a

nonacoustic sensor such as a tachometer or an accelerometer [3] to

synchronize an internally generated reference signal, thus

preventing the feedback from the secondary source to the reference

sensor. This periodic ANC system was analyzed in [4] using the

filtered-X LMS (FXLMS) algorithm [5].

An adaptive sinusoidal interference canceller using a

sinusoidal reference signal and two adaptive weights is developed

in [6]. In practical applications, periodic noise usually contains

multiple tones at the fundamental and several dominant harmonic

frequencies. Glover [7] applies a sum of sinusoids as a reference

signal to an adaptive filter with length much higher than two. The

effect of the secondary path on the transfer function of the adaptive

filter and its stability was analyzed in [8]. The application of

Glover's method for ANC was proposed in [9] for automotive 

applications. This technique will be analyzed and simulated in this

paper.

When the frequencies of the reference sinusoids are close 

together, a long filter is required to achieve good resolution

between adjacent frequencies [7]. This is an undesired solution for

practical applications since a higher-order adaptive filter results in

slower convergence, higher excess mean-square error, and higher

numerical errors [1]. The relationship between the convergence and

the frequency separation is first derived using two complex 

reference signals with two separated filters; each filter has a

complex coefficient [10]. In this paper, we analyze the more

practical case of using multiple real-valued sinusoids with a single

high-order real-valued adaptive filter. The theoretical analysis

shows that the convergence speed increases with an increase in the

frequency separation. The analysis also proves that a lower-order

filter is sufficient to achieve the same convergence speed for larger

frequency separations. These theoretical results are verified by

computer simulations. 

2. NARROWBAND FEEDFORWARD ANC SYSTEMS 

Figure 1 depicts the block diagram for a narrowband feedforward

ANC system based on the FXLMS algorithm. Here, P(z) is the

primary path,  is the estimate of the secondary path S(z). A 

synchronization signal triggers the multiple-sinewave generator

that produces the reference signal x(n), which is filtered by the

adaptive filter W(z) to produce the anti-noise y(n) to cancel the

primary noise d(n). The secondary signal y(n) is generated as 
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Figure 1 Block diagram of narrowband ANC system.
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where  is the weight vector of

W(z), and  is the 

reference signal vector. The filter length L is at least twice the total

number of sinusoids because each frequency needs at least two real

weights to deal with the in-phase and the quadrature components.

The weight vector is updated by the FXLMS algorithm expressed 

as [1]
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where µ is the step size, and  is the filtered signal vector by

 as shown in Figure 1. 
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In the narrowband ANC system proposed in [9], x(n) is

the sum of M sinusoids expressed as
M

i

i niAnx
1

)1(cos)( , (3)

where  is the frequency separation,  is amplitude of the ithiA

V ­ 2931­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



sinusoid at frequency i  with being  the fundamental

frequency.

For stationary input and sufficiently small µ, the convergence

time mse  is dependent on the eigenvalue spread  of the input 

autocorrelation matrix R as [1]

ssmse TT
min

max   (seconds), (4)

where Ts is the sampling period. In this paper, we will show that the

realization of multiple notches requires a higher-order adaptive

filter with slow convergence especially when the frequencies of the 

reference sinusoids are close [7]. The convergence of this ANC 

system will be analyzed by studying the relationship between the

eigenvalue spread  and the frequency separation , and the

required filter length for a given .

3. ANALYSIS OF DIRECT-FORM ANC SYSTEMS 

In this section, we will first derive the exact eigenvalue spread for

M = 2. Then, we will obtain bounds for the extreme eigenvalues, 

and the eigenvalue spread for the number of sinusoids M > 2. Since 

our main focus is to study the relationship among the frequency

separation, filter length, and eigenvalue spread, we assume the

secondary path S(z) is equal to unity for our analysis.

3.1. Convergence Analysis forM = 2 

The input autocorrelation matrix R has dimension LxL, and can be

expressed as [1]
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where the autocorrelation coefficients  are )(krxx

)]()([)( knxnxEkrxx
.   (6) 

Substituting x(n) defined in (3) into (6), we obtain

}])1({[cos
2

1
)(

1

kikr
M

i

xx
.   (7) 

 When M = 2, the eigenvalue spread can be derived as [11]

2/

1

2/

1

2/)12(cos
2

2/)12(cos
2

L

i

L

i

i
L

i
L

  for L is even. (8)
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  for L is odd. (9)

These theoretical results can be verified and illustrated by

observing the variation of eigenvalue spread  and filter length L

with changing frequency separation . Figure 2 shows the

convergence time in equation (4) versus different frequency

separations for L = 4, i.e., the relation between the theoretical and

computed eigenvalue spreads for different frequency separations.

The theoretical results are computed using (8) that are identical to 

the computed results obtained by computing the eigenvalues of (5)

using MATLAB. Figure 2 clearly shows the convergence time 

decreases as the frequency separation increases.

Figure 2 Convergence time vs. different frequency separations for

L = 4 (even).

Equations (8) and (9) also show that a lower-order filter is able

to achieve the same convergence rate for larger frequency

separations. Figure 3 shows that as the frequency separation

increases, the same convergence rate (indicated by the eigenvalue

spread) can be obtained with a much lower filter length.

Figure 3 Filter length vs. frequency separation for a fixed

eigenvalue spread  =10.

3.2. Arbitrary Number of Sinusoids 

The matrix R can be written as a non-trivial linear combination of

M simpler Toeplitz matrices as 
M

l

l

12

1
RR .   (10) 

Each Rl can be further expressed as
T

ll

T

lll wwvvR , l = 1, 2, ..., M, (11)

where  and  are real-valued Lx1vectors and can expressed

as

lw lv

T
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  (12) 
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  (13) 

 Rl is a positive semi-definite matrix, thus all its eigenvalues

are non-negative. Rl has rank exactly equal to two and has at most

two nonzero eigenvalues. These two nonzero eigenvalues can be

computed as [11]
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If Rl is a matrix of rank one, it would have only one nonzero

eigenvalue and that is = L.

3.3 Bounds on Extreme Eigenvalues of R 

Let  and  be the largest and the smallest positive

eigenvalues of R, respectively. Let be a real symmetric

matrix. Since A is a symmetric matrix, all its eigenvalues are real.

Let

max min

LL x
A

L...,,,, 321
 (

L...321
) be the eigenvalues

of A and  be the corresponding eigenvectors. A

is a linear combination of mutually perpendicular projection 

matrices as
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 Let , it can be written as a linear combination of the

orthonormal eigenvectors as 

L
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where i , i = 1, 2, …, L are all scalars. Thus,
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Therefore, we obtain
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To find a bound on the largest eigenvalue of the matrix R, we

use equations (10), (14) and (18) as 
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Therefore, we have
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Let x1 denote an eigenvector of corresponding to its largest 

eigenvalue, we then have
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Therefore, we have
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Equation (19) gives a relation for the minimum eigenvalue of

R. However, if L >> 2M, which is the case when the sinusoids are

very close, R is a rank deficient matrix. Thus, the minimum

eigenvalue would be zero. Hence, we obtain a different bound for

the minimum positive eigenvalue. We can use the monotonic

theorem in order to obtain a suitable bound for the minimum

positive eigenvalue [12]. From (10), we have
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where l = l1 such that 
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Let p be the rank of the matrix R. There are p nonzero eigenvalues

and (L – p) zero eigenvalues such that 0...21 p
 and 

0...1 Lp
.

Let the eigenvalues of B in equation (24) be 

. The matrix A in equation (24) has only two

nonzero eigenvalues

L...21

1  and 2  expressed as 
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From the monotonic theorem, we have
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Each of the matrices Rl has rank two. Thus, the rank of the matrix 

B in the equation (24) has a rank of at most 2(M–1). From equation

(27), we have
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Equations (21), (23) and (28) give the bounds on the largest

and the smallest positive eigenvalues of R. It shows the bounds Z1,

Z2, and Z3 depend on the frequency separation . Z1 and Z2

decrease with an increase in the frequency separation while Z3

increases. The oscillatory behavior is explained by the dampening

sinusoidal component in each of the bounds given in equations (23)

and (28). The bound decreases with an increase in the frequency

separation. Therefore, we proved that the convergence speed is

dependent on the frequency separation for an arbitrary value of M.
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3.4 Computer Simulations

Computer simulations are performed to observe the effect of

frequency separation on eigenvalue spread and to validate the 

theoretical analysis for arbitrary number of sinusoids. The

simulation results for M equals 4, 8, and 16 with the filter length L

= 2M are illustrated in Figure 4. This figure shows eigenvalue 

spread decreases with an increase in frequency separation. 

Figure 4 Eigenvalue spread vs. frequency separation.

Figure 5 shows that filter length affects the eigenvalue spread

and thus the rate of convergence. For a given number of sinusoids

(M = 4), the eigenvalue spread is computed for the filter length of

8, 12 and 16. For a given frequency separation f, an increase in

filter length decreases the eigenvalue spread and increases the rate

of convergence. This also implies that the filter length needs to be

increased as the frequency separation decreases in order to achieve 

the same rate of convergence.
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Figure 5 Effect of filter length on eigenvalue spread with different

frequency separations.

For a given frequency separation and the number of sinusoids 

M, the learning curve is obtained. The plots for different frequency

separations are shown in the Figure 6. The simulations are

performed for four different frequency separations: 10 Hz, 15 Hz,

20 Hz, and 25 Hz with the sampling rate of 2 kHz. The total

number of sinusoids is M = 8 and the filter length is L = 128. This

simulation clearly shows that the rate of convergence increases

with an increase in the frequency separation for M = 8, and it can

also be extended for arbitrary values of M

4. CONCLUSIONS

This paper analyzed the convergence of narrowband ANC

with multiple sinusoidal frequency components. The relationship

involving frequency separation between adjacent harmonics,

eigenvalue spread, and filter length is derived. This analysis

showed faster convergence can be achieved for larger frequency

separation in the reference signal. This paper also proved that the 

filter length required for achieving the same convergence speed

decreases with an increase in the frequency separation.

Figure 6 Learning curves for frequency separation of 10, 15, 20

and 25Hz 
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