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ABSTRACT

This paper presents a computationally efficient frequency

domain block nonlinear active noise control algorithm. The

computational complexity of nonlinear ANC algorithms is 

very high in comparison to the linear ANC algorithms like

filtered-x LMS. Filtered-s LMS algorithm has been recently

proposed as an effective ANC algorithm for nonlinear noise

processes. In this paper, a frequency domain block

implementation of the filtered-s LMS algorithm is proposed

to achieve computational advantage. This algorithm is the

exact implementation of the FSLMS algorithm but with

reduced complexity.

1. INTRODUCTION 

Active noise control (ANC) [1] has gained lot of research

interest because of its potential use in low frequency 

acoustic noise control. Filtered-x LMS (FXLMS) algorithm

is the most popular algorithm for ANC because of its 

simplicity. However, in case of nonlinear noise processes, 

the FXLMS algorithm shows poor performance [2]. It has 

been shown that the performance of the controller can be

improved by using nonlinear control structures. The basic

concept of nonlinear controller used here is making a 

nonlinear mapping between the input and the output of the

controller. As, at the output of the controller the secondary

path is present in ANC system, each of the nonlinear 

elements of the controllers is to be filtered through the

estimate of the secondary path transfer function for

parameter update. Hence, the nonlinear controllers involve

heavy computational overload. Hardly any work has been 

reported for fast implementation of nonlinear ANC

structure. It has been shown in [3-4] that the filtered-s LMS

(FSLMS) algorithm is a better candidate compared to

Volterra filtered-X LMS algorithm [5-6] both in terms of

performance and computational complexity for control of 

nonlinear noise processes. Transform domain adaptive

filters are conventionally used for reducing computational

complexity keeping the performance in tact. Frequency

domain block implementation of FXLMS algorithm is

proposed in [7-9] to achieve computational advantage over 

its time domain counterpart. This paper attempts to reduce

the computational complexity of the recently proposed

FSLMS algorithm making its frequency domain

implementation.

2. FILTERED-S LMS ALGORITHM AND ITS 

FILTER BANK IMPLEMENTATION 

In filtered-x LMS algorithm, the reference signal is 

filtered through the secondary path estimate filter for

updating the controller parameters. In filtered-s LMS 

algorithm the reference signal ( )x n

(x n

is expanded through

trigonometric functional expansion to make a signal vector

. The signal elements of the vector s  are filtered

through the secondary path estimate filter in case of the

filtered-s LMS algorithm. Defining the reference signal

vector ={ we can define

the functionally expanded vector

( )ns ( )n

}T( )nx ( ), ( 1),..., 1)x n x n N

( )ns ={ ( ),sin[ ( )],cos[ ( )],...,x n x n x n

sin[( ( )],cos[ ( )],

( 1),sin[ ( 1)],cos[ ( 1)],...,

sin[( ( 1)],cos[ ( 1)],...,

( 1),sin[ ( 1)],cos[ ( 1)],...

sin[ ( 1)],cos[ ( 1)]}T

P x n P x n

x n x n x n

P x n P x n

x n N x n N x n N

P x n N P x n N

The  vector contains( )ns M elements in case of th

order expansion of elements of the reference signal

vector , where 

P

N

( )nx (2 1)M N P . The derivation of 

FSLMS algorithm is presented in detail in [3]. Hence, only

its filter bank implementation is presented here.

A. Filter-Bank Implementation of FSLMS algorithm.

The FSLMS algorithm presented above is called single

channel implementation as the functionally expanded vector

 is multiplied with the weight vector and the sum

is the output of the network. Also each element of s

should be individually filtered through the secondary path 

( )ns ˆ ( )nh

( )n
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Fig.2 FBFSLMS algorithm for ANC

Fig.1 Filter bank implementation of FSLMS algorithm

estimate ˆ ( )A z

f fn y

( )y n

. To overcome this computational burden a 

simple filter-bank implementation of the same algorithm is

established and is shown in Fig.1.  The nonlinear adaptive

filter can be shown to consist of a bank of linear filters with

the inputs modulated by sinusoidal nonlinear functions.

Now we present the derivation of the nonlinear filter for its

filter bank structure. Let the output of the nonlinear filters 

may be represented as 

2P P

( )n nx x

sin[2x x

sin[n

ˆ ˆf f

i i
h h

( )
f

i
n e

'( )

( )d n

(
f

i
nh

(2

1 2 2 1( ) ( ) ( ) ... ( )f f

Pn y n y ny (1)

where ,1 1 1( ){ ( )}f f fn nx h
T

2 2 2
( ) ( ){ ( )}

f f f
y n n nx h

T
, ,

2 1 1 2 1
( ) ( ){ ( )}

f f f

P
y n n nx h

T
 and 

1
( )

f

4
( )

f

2
( )

f

P

, , ,
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, .

2
( ) sin[ ( )]

f
n nx x

( )]n n
5

( ) cos
f

( )]P nx x
2 1

( )
f

P
n

3
( ) cos[ ( )]

f
n nx x

[2 ( )]n nx x
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The weight update equation can be rewritten in this way

as

( ) ( ) ( )
f

i
n n c n

f

i

(2)

where

( ) '( )n x nc (3)

and ˆ( ) * ( )
f f

i i
x n x n a n   (4) 

( ) ( ) * ( )
f

e n y n a n   (5) 

Here all the sub adaptive filters represented by impulse

responses ,  are of memory size .) 0 2i P 1

1

N

From the diagram it is obvious that lot of computational

savings can be achieved by this implementation as for a

th order functional expansion only  elements are 

to be filtered through 

P 2P
ˆ ( )A z , where as in original FSLMS 

algorithm  elements are to be filtered through1)N P

ˆ ( )A z .  In Fig. 1, h through  are 
1

ˆ (
f

n)
2 1

ˆ f

P
h ( )n 1N th order 

FIR filters. In FXLMS algorithm only one 1N th order 

FIR filter exists. From the filter-bank implementation of

FSLMS algorithm, it is seen that the FSLMS algorithm is 

nearly equivalent to 2P 1  numbers of FXLMS algorithms

having numbers of nonlinear functional units at the

inputs. This reasoning, gives us a way to make its frequency

domain block implementation, which is advantageous over

its time domain sequential implementation in terms of

computational involvement.

2P

2P 1

1

f

i

f

i

X k
x

x

(

N

( )

k N

h

2
I

N
I

N
N

3. FREQUENCY DOMAIN BLOCK FSLMS 

(FBFSLMS) ALGORITHMS 

In this section, we propose the frequency-domain

implementation of the FSLMS algorithm exploiting the

properties of fast Fourier transform (FFT). These transforms

are used to efficiently compute the associated linear 

convolutions and correlations in the FSLMS algorithms.

This algorithm is termed as frequency domain block

FSLMS (FBFSLMS) algorithm

From the previous section it is learnt that the FSLMS

algorithm involves  numbers of convolutions and 

2P  numbers of cross correlations. These convolutions

and correlations are implemented in transform domain using

overlap and save method. Defining
1

2
 and

N 2 N
F F  as the 2N-

point FFT and IFFT, the th linear convolution may be 

implemented as follows.

i

2

( )
( )

( )

f

i N

k
N F

k N
  (6) 

2

ˆ )
Nf

i N i

I
H k F k

O
  (7) ˆ f

1 ˆ( ) [ ] [ ( ) (
f f

i N N N i
O F X k N H kx )]

f

i
. (8) 

where  denotes frequency-by-frequency bin multiply or

in more general way point-by-point multiplications of two

vectors. Two vector of same length can be multiplied

element-by-element wise in this operation to get a vector of 

same length. The matrix  is an  identity matrix; the

matrix O  is an

N N

N  matrix with all zero elements.

Similarly, th cross correlation may be implemented as 

follows.

i
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2

ˆ ˆ( )  ( )
N

N

N

I
A k F a k

O
   (9) 

1

2

ˆ'( ) [ ] [ ( ) ( )]
f f

i N N N i
k N O I F X k N A kx
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i

)

)]

)

)

. (10) 

The FFT-based implementation of the cross-correlation

can be expressed as 

2

'( )
'( )

'( )

f

f i

i N f

i

k
X k N F

k N

x

x
(11)

2
( ) (

N

N

N

I
E k N F k N

O
e   (12) 

1 *

2
( ) [ ] [ ' ( ) (

f f

i N N N i
k N O I F X k N E k Nc .(13)

where {.}* is for complex conjugate operator. The time

domain weights are updated as 

ˆ ˆ( ) ( ) (
f f f

i i i
k N k k Nh h c (14)

The structure of the FBFSLMS is shown in Fig. 2 and 

Fig. 3. This structure is different from the frequency-domain

implementation of the FXLMS (FBFXLMS) algorithm

proposed by Shen and Spanias [7, 8], the way the filtering 

of the reference signal, through the secondary-path estimate,

is implemented. In the proposed method, the secondary path

filtering is done in block frequency domain.

4. COMPUTATIONAL COMPLEXITY

Assuming the length of secondary path estimate filter

, the number of multiplication requirements for -

samples is 3 (  and  in

FSLMS and FBFSLMS algorithms respectively. Therefore 

as an illustration for , FSLMS and FBFSLMS 

algorithms involves 1048576  and 182272

L N N

)

1)

2 2 1N P 2(14 log 38 )(2 1N N N P

1024

(2 1)P (2P

N

numbers of multiplications, respectively.

5. SIMULATION RESULTS 

To validate the effectiveness of the present reduced

complexity FBFSLMS algorithm over FBFXLMS

algorithm, computer simulation is carried out. Four

experiments are carried out for nonlinear ANC. In all

experiments the linear part of the primary path is chosen as 

( b n  is its impulse

response). The experiments are conducted for two different

types of primary path nonlinearity (second and third order)

and two different types of secondary path transfer function

(minimum and maximum phase). The primary signal is

generated from the following equations.

5 6( ) 0.071 0.59 0.9B z z z z 7 ( )

( ) 2 sin( / 8 2 ) 0.0s n n 1 ;  where  is a unit

power Gaussian random noise, and  is used to randomly

vary the phase of the periodic signal to compute the

ensemble average. The ensemble average of square error 

(EASE) for 100 independent trials is chosen for 

performance evaluation. Also, the power spectral magnitude

of the square error signal in the steady state is used for 

further performance comparison.

Experiment 1: In this experiment, the primary noise at

the canceling point is generated based on the following

third-order polynomial model,
2 3( ) ( 2) 0.5 ( 2) 0.04 ( 1)d n t n t n t n

( ) ( )* ( )t n x n b n

where

and * denotes convolution operation. The 

secondary path is chosen as a nonminimum phase system
2 3 4( ) 1.5A z z z z . The results are plotted in Fig. 4

and Fig. 5. 

Experiment 2: In the second experiment, the primary

noise at the canceling point is generated based on the

following second-order polynomial model,
2( ) ( 2) 0.5 ( 2d n t n t n ) . The secondary path is

same as that of expt. 1. The results are plotted in Fig. 6 and

Fig. 7. 

Experiment 3: Here, the nonlinear part of the primary

path is chosen same as expt.1. The secondary path is chosen 

as a minimum phase system 2( ) 0.5 3A z z z . The results

are plotted in Fig. 8 and Fig. 9. 

Experiment 4: Here, the nonlinear part of the primary

path is chosen same as expt. 2. The secondary path is

chosen as a minimum phase system. The results are plotted 

in Fig. 10 and Fig. 11. 

From the results of all the four experiments, it is concluded

that the FBFSLMS algorithm outperforms the FBFXLMS 

algorithm in terms of mean square error. To evaluate the 

effect of nonlinearity on the residual error, the power

spectral magnitudes of the square error signals for every

experiment are plotted. From the plot it is seen that the

FBFSLMS algorithm being a nonlinear controller performs

Fig. 3 Internal of the T block of FBFSLMS
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better for third order nonlinearity case, in comparison to the

second order one. 

6. CONCLUSION 

In this paper, a computationally efficient frequency domain

block FSLMS algorithm, a nonlinear active noise control

algorithm, is newly proposed to achieve computational

advantage. The filter bank implementation of FSLMS

algorithm is established, which gives a way to apply the

conventional frequency domain block implementation for 

FSLMS algorithm. The detailed derivation of the algorithm

is presented. The computational complexity of nonlinear

ANC algorithms is also analyzed. This algorithm is the

exact implementation of the FSLMS algorithm but with

reduced complexity. Computer simulation study of the

proposed algorithm along with FBFXLMS algorithm

validates the effectiveness of the proposed algorithm over

the FBFXLMS algorithm.
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Fig. 9 Spectrum of residual error in experiment 3
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Fig. 7 Spectrum of residual error in experiment 2
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