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Universidad Politécnica de Valencia

http://www.gtac.upv.es, agonzal@dcom.upv.es

ABSTRACT

An efficient version of the affine projection (AP) algorithm, which
is called FXAP-AC throughout the paper, is presented. This algo-
rithm uses the filtered-x structure instead of the modified structure
which is required for the implementation of the AP algorithm when
the desired signal is not available, for instance in Active Noise
Control (ANC) applications. The conventional AP algorithm for
ANC, which is based on the modified structure (MFXAP), pro-
vides good performance. However the filtered-x structure is ad-
visable for practical cases since it achieves a meaningful computa-
tional saving avoiding the additional filtering needed by the modi-
fied structure without significantly affect the performance in prac-
tice. In this paper, an efficient computation of coefficient update is
developed for the FXAP resulting in the FXAP-AC. This low-cost
strategy already proposed in the conventional AP algorithm can be
suitably combined with others previously reported to achieve very
fast and robust FXAP algorithms. Experimental results validate
the use of the proposed algorithm for practical applications.

1. INTRODUCTION

The family of affine projection algorithms (AP) [1] have been de-
veloped during last years to be used in practical applications in or-
der to improve the convergence properties of Least Mean Squares
(LMS) type adaptive filters but avoiding the high computational
complexity of the Recursive Least Squares (RLS) algorithms [2].

The convergence properties of the AP algorithm can be im-
proved by increasing what is called the projection order (N) but
also its computational complexity. Computationally efficient strate-
gies have been developed for practical AP algorithms [3] to achieve
low computational cost algorithms whereas their good convergence
properties remain, thus providing fast AP algorithms (FAP). Dif-
ferent efficient AP filtering methods have been proposed and im-
plemented for different applications, mainly acoustic echo cancel-
lation [4, 5] and sound reproduction and control [6, 7]. Some
of these strategies already proposed are based either on efficient
calculation of the error vector [3, 8], or low-cost matrix inver-
sions [9, 10, 11], or fast computation of the coefficient update [5]
or meaningful combinations between them [12].

The fast computation of the coefficient update (also known as
auxiliary coefficient strategy) was first introduced by Gay in [5]
for echo cancellation. This strategy involves computing, instead of
the adaptive filter coefficients, some auxiliary coefficients which
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require less operations to be updated. Thus, the desired signal
needed for the echo signal cancellation is achieved by means of the
auxiliary coefficients and their relationship with the coefficients of
the adaptive filter. In the single channel case, this strategy rep-
resents a saving of 3N multiplications per iteration achieving a
meaningful computational saving when the projection order in-
creases. In this paper, we will use this strategy in filtered-x adap-
tive filtering schemes, specially suitable for ANC.

The application of the AP algorithm to ANC requires to take
into account firstly two things: the secondary path between the
adaptive filter output and the error sensor whose negative effects
on the algorithm performance should be compensated using the
suitable adaptive filtering scheme, and the unavailability of the
desired signal. Both things together lead us to use the modified
structure of the filtered-x adaptive filtering scheme which is more
computationally demanding that the basic filtered-x scheme. Most
of the reported AP algorithms consider the modified structure [6].
We will name this algorithm as Modified Filtered-x AP (MFXAP)
algorithm throughout this paper. On the other hand, a fast AP al-
gorithm based on filtered-x structure was firstly reported by the
authors in [8] and it is named Filtered-x AP (FXAP). In this paper,
a fast new version of the FXAP algorithm with efficient computa-
tion of coefficient update (FXAP-AC) is developed.

In Section 2, we describe the conventional AP algorithm. The
FXAP is presented in section 3. Section 4 is devoted to apply
the auxiliary coefficient strategy to the FXAP, resulting in the fast
FXAP (FXAP-AC). A comparative practical study of the FXAP-
AC, the FXAP, the filtered-x LMS (FXLMS) [13] and the MFXAP
for a multichannel ANC system, is presented in Section 5.

2. ADAPTIVE AFFINE PROJECTION ALGORITHM

The AP can be derived solving an optimization problem where the
solution is constrained to the minimum perturbation principle [2],
that implies a minimum variation of the weight vector whereas the
filter coefficients are constrained so that the desired signal d[n] is
exactly generated by filtering the reference signal x[n], see Fig-
ure 1. The solution of the constrained optimization criterion gives
the following expression of the adaptive filter coefficient update,

wL[n+1] = wL[n]+µAT [n](A[n]AT [n]+δI)−1eN [n], (1)

where wL[n] is a vector comprised of the L adaptive filter coeffi-
cients at the nth time instant (wL[n] = [w1[n], w2[n], ..., wL[n]]T ).
In practical applications, a regularization parameter δ is incorpo-
rated to the matrix inversion to mitigate matrix inversion prob-
lems. A convergence parameter µ is used to adjust the convergence
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Fig. 1. Adaptive filtering scheme

speed. Matrix A[n] of dimensions N × L is defined as follows:

AT [n] = [xL[n],xL[n − 1], ...,xL[n − N + 1]], (2)

being xL[n] a vector with the last L samples of signal x[n]. The
error vector, denoted by eN [n] in equation (1), is calculated by:

eN [n] = dN [n] − A[n]wL[n], (3)

where dN [n] is the N × 1 vector composed by the desired signal
samples, (dT

N [n] = [d[n], d[n − 1], ..., d[n − N + 1]]).

3. ADAPTIVE AFFINE PROJECTION ALGORITHM FOR
ANC

Affine projection algorithm was originally proposed for echo can-
cellation [3, 4], where the desired signal is available. However, this
is not the case for ANC systems where the system can only pick
up the error signal e[n]. Thus, the modified structure has been
usually applied in ANC systems [6, 7] because it allows to recover
the desired signal needed in the AP algorithm, see equation (3).
Nevertheless, the modified structure is more computationally de-
manding than the adaptive filtering scheme commonly applied in
ANC systems, the filtered-x structure, since additional filtering is
required [14]. Moreover, the filtered-x scheme offers a good trade-
off between convergence properties and computational cost. The
application of the filtered-x scheme to the AP algorithm provides
the Filtered-x AP (FXAP) algorithm, that can outperform some ef-
ficient AP algorithmic variants based on the modified structure in
terms of computational complexity whereas it shows useful con-
vergence properties [12].

With regard to the AP algorithm equations described in the
previous section, the following additional notation is required to
describe the FXAP (for simplicity a single channel ANC system is
considered: one input signal, one actuator and one error sensor),

• M: Length of the h FIR filter modelling the secondary path
(acoustic plant between the actuator and the error sensor).

• y[n]: Value at time n of the signal at the actuator.

• xf [n]: Value at time n of the reference signal filtered by h.

• h = [h1, h2, ...hM ]T , being hm the mth coefficient in the
h FIR filter.

• vL[n]=[xf [n], xf [n − 1], ...xf [n − L + 1]]T

• V[n] = [vL[n] . . .vL[n − N + 1]]T

• xM [n] = [x[n], x[n − 1], ...x[n − M + 1]]T

• eN [n] = [e[n], e[n − 1], ... e[n − N + 1]]T

It should be noted, that the error vector eN [n] is not exactly the
same described by equation (3). As it was previously commented,
in ANC systems based in filtered-x structure we can not access the
desired signal to calculate the required error vector, therefore the
FXAP uses past samples of the error signal e[n] to build eN [n].
This approximation is accurate enough under the assumption of
slow convergence and accurate estimation of the secondary path [8].

According to the preceding notation, the FXAP algorithm can
be described as follows, where it is assumed that the signals e[n]
and x[n] are available:

• The normalized error vector is computed as:
εN [n] = [V[n − 1]VT [n − 1] + δI]−1eN [n]

Multiplications: LN2+N2+N+ O(N3

2
)

• The update equation is given by:
wL[n] = wL[n − 1] − µVT [n − 1]εN [n]
Multiplications: LN+L

• The filtered reference signal is obtained as:
xf [n] = hT xM [n]
Multiplications: M

• And finally the cancelling signal is obtained as:
y[n] = wT

L [n]xL[n]
Multiplications: L

The total number of multiplications per iteration required in
the FXAP reaches LN2 + N2 + N + O(N3

2
) + M + NL + 2L.

Among these multiplications, NL + 2L can be saved by using the
auxiliary coefficient strategy. On the other hand, other efficient
strategies to compute the normalized error vector allow to reduce
the number of multiplications even more. As an example, the fast
strategy described in [9] to avoid matrix inversions requires a com-
putational cost of only 8N2+4N2+2+M multiplications instead
of LN2 + N2 + N + O(N3

2
) + M .

Finally, it should also be noted that the temporal index of the
reference signals is delayed in the coefficient update equation as
well as in the normalized error vector equation. This fact im-
proves significantly the algorithm performance when using a prac-
tical sample by sample processing approach since the coefficient
update equation depends on two signals highly correlated, the sig-
nal derived from the reference signal, V[n−1], at sampling instant
(n− 1) and the normalized error vector, belonging to the same in-
stant.

4. FILTERED-X AP ALGORITHM WITH AUXILIARY
COEFFICIENTS

4.1. Auxiliary coefficient strategy

The efficient computation of coefficient update involves comput-
ing, instead of the coefficients of the adaptive filter, some auxil-
iary coefficients which require less operations to be updated [5].
Thus, the cancelling signal needed for the active control system is
achieved by means of the auxiliary coefficients and their relation-
ships with the coefficients of the adaptive filter,

y[n] = ŵT
L [n]xL[n] − µvT

L [n]V
T
[n]êN [n] (4)

where V[n] is a (N − 1) × L matrix with the first (N − 1) rows
of matrix V[n] and ŵT

L [n] is a vector comprised of the L auxiliary
coefficients with an update equation:

ŵL[n] = ŵL[n − 1] − µvL[n − N ]eN−1[n] (5)
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being eN−1[n] the last element of the auxiliary error vector,

êN [n] = εN [n] +

[
0

êN [n − 1]

]
(6)

where êN [n] in (4) and (6) refers to the first N − 1 elements of
auxiliary error vector êN [n].

From equations (4) and (5) it seems that computational saving
gained by using the auxiliary coefficient update is lost by the cost
due to the computation of the cancelling signal, equation (4). How-

ever, the vector-matrix product vT
L [n]V

T
[n] can be recursively

computed as:

[vT
L [n]V

T
[n]]T = r[n] = r[n−1]+v[n]vT

N [n]−v[n−L]vT
N [n−L]

(7)
where vT

N [n] is the (N − 1) × 1 vector with the first (N − 1)
elements of the filtered reference signal vector vL[n − 1].

4.2. Algorithm description

The Filtered-x AP algorithm with the auxiliary coefficient strategy
embedded (FXAP-AC) can be finally described as follows.

• The normalized error vector is calculated as,
εN [n] = [V[n − 1]VT [n − 1] + δI]−1eN [n]

Multiplications: LN2+N2+N+O(N3

2
) (O(N3

2
) cost can be

avoided by means of efficient matrix inversion [9])

• Following, the auxiliary error vector is,

êN [n] = εN [n] +

[
0

êN [n − 1]

]

• Next, the auxiliary coefficient update,
ŵL[n] = ŵL[n − 1] − µvL[n − N ]eN−1[n]
Multiplications: L+1

• The filtered reference signal is obtained as,
xf [n] = hT xM [n]
Multiplications: M

• The vector r[n] is given by
r[n] = r[n − 1] + v[n]vT

N [n] − v[n − L]vT
N [n − L]

Multiplications: 2(N-1)

• Finally, the cancelling signal is obtained,
y[n] = ŵT

L [n]xL[n] − µr[n]T êN [n − 1]
Multiplications: L+(N-1)+1

5. SIMULATION RESULTS

5.1. Multichannel ANC system

In order to test the performance of the proposed FXAP-AC al-
gorithm compared to other versions of the AP and the FXLMS
in a practical system, a multichannel ANC system with one pri-
mary source (I = 1), two secondary sources (J = 2) and two
error sensors (K = 2) (1:2:2 ANC system) is considered. Several
simulations have been carried out using: a white gaussian noise
source, real acoustic paths measured in a real room and a length
of M = 250 coefficients for the filters modelling the secondary
paths.

Algorithm multiplications per iteration Typical case

FXAP IJK[LN2+N2+N+O(N3

2
)+M]+ 7370

IJ(NLK+2L)

FXAP-AC IJK[LN2+N2+N+O(N3

2
)+M]+ 6524

IJ[K(L+N)+L+1]+IJK[2(N-1)]

Table 1. Number of multiplications per channel and per iteration
of the FXAP and the FXAP-AC algorithms for the general case and
also for a 1:2:2 ANC system, N = 50, L = 50 and M = 250.
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Fig. 2. Comparison of the computational cost of the FXAP and
the FXAP-AC algorithms in a 1:2:2 ANC system for: a) different
projection orders and b) different length of adaptive filter.

5.2. Computational complexity

Table 1 illustrates the number of multiplications per channel and
per iteration required by the FXAP and the FXAP-AC algorithms
for the general case and for the 1:2:2 ANC system. As it was ex-
pected, the FXAP-AC shows less computational complexity than
the FXAP algorithm. In Figure 2, a computational cost comparison
for different projection orders (L = 50) and for different length of
adaptive filters (N = 50) in a 1:2:2 ANC system is presented. It
must be noted that the computational saving of the FXAP-AC al-
gorithm increases when N and/or L increase. More details related
AP algorithms in terms of computational cost can be found in [15].

5.3. Convergence curves

In order to validate the new approach for practical applications,
the convergence speed should also be studied. Different conver-
gence curves [15] have been obtained. The FXAP and the FXAP-
AC exhibit pretty similar results, see Figure 3. Moreover, when
the projection order increases the residual error decreases in both
algorithms as it was expected. On the other hand, it seems con-
venient to compare algorithm performances using maximum value
of the convergence parameter µ. A projection order of N = 5 and
the algorithms FXLMS, FXAP, FXAP-AC and the MFXAP, were
chosen in the simulations shown in Figure 4. In addition to the sim-
ilarity between the FXAP and the FXAP-AC curves, the MFXAP
algorithm shows a slightly faster convergence speed but with a
higher computational cost than the FXAP [12]. Furthermore, the
residual error is less in the filtered-x algorithms (FXLMS, FXAP
and FXAP-AC), since their convergence parameters are smaller
than those of the MFXAP.
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Fig. 3. Convergence curves of the FXAP algorithm (a) compared
to the proposed FXAP-AC (b) of order N = 2, 3 and 5 for random
noise. Signal in error sensor 2.

6. CONCLUSIONS

The FXAP-AC algorithm based on the the filtered-x structure and
the auxiliary coefficient strategy has been introduced for multi-
channel ANC, providing a significant computational saving over
the FXAP and the MFXAP for similar convergence properties.
Moreover, the FXAP-AC showed a better performance than oth-
ers AP algorithm versions. Therefore this algorithm has shown to
be very suitable for real practical multichannel ANC systems.
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