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Abstract 

The adaptive Volterra filter has been successfully applied in 

nonlinear acoustic echo cancellation (AEC) systems and nonlinear 

line echo cancellation systems, but its applications are limited by its 

required computational complexity and slow convergence rate, 

especially for systems with long memory length. In this paper, by 

leveraging a multi-channel configuration of the Volterra filter and 

the sampling theory for nonlinear systems, we extend linear sub-

band delay-less adaptive filter techniques to develop an efficient 

sub-band implementation of the adaptive Volterra filter. The 

developed sub-band configuration of the adaptive Volterra filter can 

greatly improve the convergence rate and reduce the computational 

complexity of nonlinear echo cancellers, which is shown by analyses 

and simulations. 

1. Introduction 

Acoustic echoes arise from the acoustic coupling between the 

receive- and transmit-paths of a telecommunication terminal which 

greatly affects the quality of voice communication in wireless 

communication systems, VoIP services, etc. Acoustic echo 

cancellation (AEC) is an effective technique to suppress the echo 

effect and improve the communication system performance. The 

configuration of an AEC system is shown in Figure 1. Most AEC 

techniques do not consider the nonlinear distortion caused by 

loudspeakers, amplifiers and nonlinear effects in the vibration of the 

enclosure. However, recently, it has been found that the AEC system 

performance could be greatly improved by considering the 

nonlinearities existing in the system. Consequently, nonlinear 

acoustic echo cancellation (AEC) techniques, e.g. the algorithms in 

[1]-[3], have been developed. The nonlinear distortion has also been 

studied in the line echo cancellation configuration [4].   

Figure 1. Configuration of acoustic echo cancellation

The adaptive Volterra filter has been applied in nonlinear acoustic 

echo cancellation (AEC) and nonlinear line echo cancellation 

systems to identify and track the time-varying nonlinear impulse 

response (NIR) from the far-end signal to the echo signal, which 

usually includes the A/D converter, nonlinear loudspeaker, room 

transfer function and other components [4]. Research results have 

proven the effectiveness of nonlinear echo cancellation using the 

adaptive Volterra filter [1]-[4]. However, it is well known that the 

adaptive Volterra filter suffers from a large computational 

complexity and is slow to converge. These are significant problems 

in nonlinear AEC systems due to the long memory length of the NIR 

and the wide speech spectral dynamics [5]. Many researchers 

working in this area have proposed different methods and simplified 

structures to speed convergence and reduce the computational 

burden, e.g. the affine projection based adaptive Volterra filter [1], 

cascaded structures implementation [2], and the MMD (multi-

memory decomposition) structure [3]. 

The delay-less sub-band implementations of adaptive linear filters 

are proposed in [7], [8]. Without introducing the signal path delay, 

the proposed methods can greatly increase the convergence speed 

and reduce the computational complexity of large-order linear AEC 

systems and active noise control (ANC) systems. However, due to 

the complexity and spectral outgrowth caused by the nonlinearities, 

no sub-band version of the adaptive nonlinear filters is typically 

available.

In this paper, we use the sampling theory of nonlinear systems and 

the multi-channel structure of the Volterra filter to propose a new 

efficient delayless sub-band adaptive Volterra filter. Our 

configuration is based on a combination of Morgan’s configuration 

[7] and DeBrunner’s configuration [8], which is suitable for 

adaptive Volterra filter implementation. Like its linear counterparts, 

our proposed sub-band implementation of the adaptive Volterra 

filter demonstrates fast convergence and computational efficiency 

for a large-order system, which has proved to be especially useful in 

nonlinear AEC systems when the NIR has a large memory and 

speech is the main reference signal. 

2. Preliminary Background 

In nonlinear echo cancellation, the nonlinear system can be modeled 

and approximated by the truncated Volterra series model [1]-[4], 

[9], i.e. the relationship between the echo signal ( )y n  and the far-

end signal ( )x n  can be expressed by the N-sample memory pth-

order truncated Volterra series expansion: 
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We use ( ), ,
1

h k k
p p

…  to represent the pth order Volterra kernel. 

Note the symmetry of the kernels is considered in (1). Without loss 

of generality, we can ignore the zero order term 
0

h . Since we 
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consider the adaptive Volterra filter algorithm, we need indicate the 

time index n  to the Volterra kernel. Thus, we write

( ) ( ) ( )
T

y n X n H n=     (2) 

where the signal ( )X n  incorporates a special arrangement of the 

states of ( )x n  in (1)  
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Here ( )X n
i

( 1, 2, ,i C= … ) is a group of states with delayed 

relationship defined as  
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By this arrangement, we only need to calculate the first element of 

each group ( )X n
i

( 1, 2, ,i C= … ), and then the rest can be obtained 

by appropriate delay. Correspondingly, we can group the 

coefficients of the Volterra series as: 
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Alternatively, we can write Eq. (1) as: 
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Eq. (7) represents the multi-channel representation of the Volterra 

filter as shown in Figure 2 (referred to as the diagonal representation 

in [10]). The output of the Volterra filter can be regarded as the sum 

of several linear filter outputs. Here C  is the maximum number of 

groups (channels). ( )H n
i

( 1, ,i C= … ) is the set of ith channel 

coefficients; ( )
1

H n  represents the linear component of the Volterra 

series and the high order channels ( )H n
i

 ( 1i > ) represent 

nonlinear components of the Volterra series. The nonlinear echo 

cancellation problems can be regarded as an adaptive nonlinear 

system identification problem, i.e. the adaptive identification of the 

NIR. Using the multi-channel implementation of the Volterra filter, 

we see that to identify a nonlinear system is to identify each 

channel’s coefficients, the ( )H n
i

( 1, ,i C= … ) in Fig. 2.  

It is well known that to identify a linear system we should sample 

the input signal at its Nyquist frequency or higher. The input to the 

high order channels have a frequency much higher than the Volterra 

input ( )x n . So it seems we need to sample the input x(n) at a much 

higher frequency than its Nyquist frequency or we need to up-

sample the nonlinear states of the higher order channels. However, a 

recent research result in [11] proves that, to identify the nonlinear 

system, we only need to sample the input signal ( )x n  at its Nyquist 

frequency – exactly at twice the maximum frequency found in the 

input signal ( )x n . Based on this theory, it is not necessary to up-

sample the nonlinear states in ( )X n
i

( 1i > ). This means we don’t 

need to consider the nonlinear spectral outgrowth to identify the 

high-order channels, i.e. we can treat each channel in Fig. 2 just like 

we would a linear filter. 
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Figure 2. Multi-channel implementation of the Volterra filter 
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Figure 3. Sub-band adaptive Volterra filter based on multi-channel 

configuration 

3. Sub-band implementation of an adaptive Volterra filter 

From the above analysis, in the multi-channel implementation of the 

Volterra filter we can regard each channel in Fig. 2 as a linear filter 

without extra consideration concerning the spectral outgrowth. As a 

result, we can extend the linear sub-band adaptive filter techniques 

to develop an adaptive sub-band Volterra filter based on the multi-

channel structure. The configuration of the developed sub-band 

adaptive Volterra filter is shown in Fig. 3. If one interprets this 

figure as a nonlinear AEC configuration, ( )x n  represents the far-

end signal and so is the reference signal provided to the adaptive 

Volterra filter, which in this case would usually be speech. ( )P n  is 

the NIR; ( )s n  represents the acoustic echo [1]. 

The conventional linear sub-band adaptive filters induced delay in 

the signal path through the introduction of the sub-band filters into 

that path. This delay limits the application of AEC [7]. Morgan et. 

al. [7] proposed the delayless sub-band adaptive linear filter as 
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shown in Figure 4. In that configuration, the coefficients for each 

sub-band are updated independently and then combined through an 

FFT to yield the broadband coefficients. The Morgan configuration 

can greatly reduce the computational complexity when the linear 

system has a large order. However, in order to have a good 

approximation for each sub-band frequency response, each sub-band 

needs to have at least 4 coefficients. Also, to increase the 

convergence speed, at least 4 sub-bands are required. These limit the 

application of the Morgan sub-band configuration to applications 

with large-order channels. DeBrunner et. al. [8] introduced another 

configuration for the sub-band adaptive linear filter as shown in 

Figure 5 that directly updates the broadband coefficients based on 

all sub-band signals. Without up-sampling and down-sampling, the 

DeBrunner configuration has no limitations on the adaptive filter 

order; however, the computational complexity will increase as the 

number of channels increases. 

In the multi-channel implementation of the Volterra filter, different 

channels have different lengths for fixed memory Volterra models. 

As shown in (6), the linear terms of ( )x n  have a length N+1, but 

the channel with state ( ) ( - ) ( - )x n x n N x n N…  only has length 

one. As a result, neither the Morgan nor the DeBrunner 

configuration is suitable for our sub-band adaptive Volterra filter. 

In our proposed sub-band adaptive Volterra filter, we combine these 

two configurations. This means that when the order of the channel is 

less than 64, we can implement the DeBrunner configuration; 

otherwise, we implement the Morgan configuration. As a result, we 

combine Figs. 3, 4, and 5, to yield our proposed sub-band adaptive 

Volterra filter. By subband decomposition, we can decrease the 

eigenvalue spread in each sub-band, and each sub-band can be 

updated using different step sizes. As a result, the convergence 

speed is greatly improved, and especially for colored inputs such as 

speech. 

4. Sub-band implementation cost 

In this section, we consider the implementation cost of the full-band 

adaptive Volterra filter and our proposed sub-band adaptive 

Volterra filter, both of which are based on the multi-channel 

configuration of the Volterra filter. We calculate the number of real 

multiplications per iteration for updating one channel of the 

adaptive Volterra filter with a total of M  coefficients. We assume 

that each channel is updated by the simple least mean square (LMS) 

method in both the full-band and sub-band configurations. Note, 

however, that other updating methods can also be applied in our 

algorithm, such as the RLS and affine projection algorithms to 

further increase the convergence rate. For the full-band LMS based 

adaptive Volterra filter, we find that the LMS algorithm requires  

2 1FR M= +           (8) 

real multiplications – one M for filtering and another M is

required to calculate the instantaneous gradient, and one more 

multiplication is required for applying the step size. The number of 

real multiplications for one channel of length N in Fig. 3 based on 

Morgan’s configuration can be obtained from [7]: 

2 22

4( 2 ) 16
2 log ( ) 3 log ( )M

P N N
R N Q N

Q Q

+
= + + + +              (9) 

where Q is the number of sub-bands and P is the length of the 

prototype filter. The number of multiplications for one channel 

based on DeBrunner’s configuration can be obtained from [8]:  

 (2 ) 1
D

R Q L N N= + + +             (10) 

where Q is the number of sub-bands and L is the length of the sub-

band filter. Thus, the total number of multiplications required for the 

sub-band adaptive Volterra filter is a combination of RM and RD.

This computational complexity can be further reduced by using the 

recently developed multiple input multipliers [12] and sharing the 

sub-band error signals for different channels. From these 

calculations, we find that if most channels in the Volterra filter have 

large order, our configuration can greatly reduce the computational 

cost. For a low-order nonlinear system, the sub-band 

implementation will somewhat increase the computational 

complexity. However, this cost is offset by the fast convergence rate 

as shown in our next section. The recently introduced affine 

projection adaptive Volterra filter can greatly increase the 

convergence speed of the echo canceller. However, when compared 

to the full-band normalized LMS algorithm, the computational 

complexity increase is proportional to the order of the affine 

projection algorithm. 
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Figure 4. Delayless sub-band adaptive linear filter based on the 

Morgan configuration 
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5. Simulation of the new algorithm 

We simulate the nonlinear AEC using the three approaches: 1) our 

proposed sub-band adaptive Volterra filter as shown in Fig. 3, 2) the 

full-band adaptive Volterra filter of [3], and 3) the affine projection 

adaptive Volterra algorithm with order 3 in [1]. To facilitate our 

simulation, the NIR is modeled as a Volterra filter with three 

channels: the first channel is a linear channel with length 128, while 

the second and third channels are nonlinear channels of length 128 

and inputs ( ) ( )1x n x n − and ( ) ( )3x n x n − , respectively. These 

are typical lengths of the impulse response for the hardest receivers. 

The Volterra channels’ coefficients are shown in Fig. 6. 

The speech signal x(n) is a speech signal measured in our laboratory 

with sampling frequency of 20k Hz. The full-band adaptive Volterra 

filter and our proposed sub-band adaptive Volterra filter are updated 

using the normalized LMS algorithm. The step sizes of the adaptive 

Volterra filters for the different channels and the different sub-bands 

are tuned to ensure that the adaptive filters converge at their fastest 

convergence rate. The performance of the nonlinear AEC is 

measured by the echo return loss enhancement (ERLE): 
2

10 2

( ( ))
10 log

( ( ))

E d n
ERLE

E e n
=   (11) 

The ERLE versus time for the nonlinear AEC using the full-band 

NLMS, proposed sub-band NLMS and the affine projection 

Volterra filters are shown in Fig. 7. Here, we find that the nonlinear 

AEC based on our proposed sub-band adaptive Volterra filter has a 

much faster convergence rate when compared to the one using the 

full-band adaptive Volterra filter. Our proposed algorithm does, 

however, converge slightly more slowly than the affine projection 

algorithm. Note, however, that the affine projection algorithm 

requires far more computational complexity than our proposed 

subband algorithm. 

6. Conclusion 

In this paper, an efficient delayless sub-band adaptive Volterra filter 

algorithm was proposed for the first time for nonlinear echo 

cancellation. Our simulations and analyses show that our method 

can increase the convergence rate of the adaptive Volterra filter and 

reduce the computational complexity for large order systems, which 

in turn improves the performance of the nonlinear echo cancellation 

systems. Other applications of our proposed algorithm will be in 

nonlinear system identification and adaptive nonlinear interference 

cancellation. 
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Figure 6. Three-channel Volterra nonlinear model. The top curve is 

linear channel coefficients; the middle and bottom curves are 

nonlinear channels. 

Figure 7. ERLE for different AEC algorithms 

Time in second (s) 

E
R

L
E

  
(d

B
) 

Samples 

V  280


