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ABSTRACT

In order to compensate the nonlinear distortion in the hands 

-free telephones or teleconferencing system, a memoryless 

power- series–based polynomial NLMS adaptive filter can 

be used to cancel nonlinear acoustic echo. Conventional 

polynomial model employs a power-series expansion. In 

this paper we propose an orthogonal polynomial adaptive 

filter to accelerate the convergence rate of the nonlinear 

adaptive filter. The convergence rates of residual echo 

power for both power-series and orthogonal polynomials 

are derived analytically. Computer simulations justify our 

analysis and show the improved performance of the 

proposed nonlinear acoustic echo canceller. 

1. INTRODUCTION 

Hands-free telephone or teleconferencing usually suffers 

from the annoying acoustic echo problem. A linear adaptive 

filter is commonly used for acoustic echo 

cancellation(AEC). However, overdriven the power 

amplifier of loudspeaker will incur nonlinear distortion. The 

nonlinear distortion will limit the echo cancellation 

performance and the conventional linear acoustic echo 

canceller(AEC) cannot cope with this kind of distortion. 

Recently, several nonlinear AEC structures have been 

proposed to compensate this kind of distortion [1]. The 

cascaded nonlinear AEC structure has fewer coefficients 

than the Volterra filter [2] and has less computational 

complexity, if it is updated by the NLMS algorithm. The 

nonlinear AEC is shown in Fig.1. The power amplifier of 

loudspeaker is modeled by the nonlinear processor and the 

echo path is modeled by the linear filter. The power series 

polynomial cascade FIR is simple to implement but its high 

correlation among different polynomial orders leads to low 

convergence rate. In [3] an adaptive orthogonalized power 

filter is proposed to improve convergence rate. The 

orthogonal basis is updated online in each iteration and the 

Gram Schmidt procedure is employed to find out the 

orthogonalization coefficients, as a result, computational 

complexity is increased. In this paper we use a fixed 

orthogonal polynomial to produce the nonlinear components. 

With the assumption of a perfect linear filter, convergence 

analysis of the residual echo power is performed. Its low 

computational complexity and fast convergence rate makes 

the orthogonal polynomial filter very promising for 

nonlinear AEC.  

Fig.1 Nonlinear acoustic echo canceller 

2. STRUCTURE OF THE NONLINEAR AEC 

As shown in Fig 1, the signal from the far end is assumed to 

be nonlinearly distorted only in the power amplifier of 

loudspeaker. It is then passing through a room impulse 

response h[n]. Let d(n) denote the desired signal. The AEC 

output signal  can be written as y(n)
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where  represents the estimated coefficient vector of 

the linear filter, s( is the output vector of nonlinear filter,

(n)h

n)

pi  is the polynomial basis of order i , N is the order of the 

polynomial, and a  is the estimated coefficient vector of 

the nonlinear filter. The estimated error is e(n .
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The gradient of , as derived for linear transversal filter 

in [3] can be calculated according to: 
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If the coefficient vectors are updated with step size and

, a NLMS-type adaptive algorithm is given as follows:  
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At each iteration, the echo signal e( is the same for 

coefficient updating in both (1) and (2) which form the 

general formula of a joint NLMS-type adaptation of both 

stages.

n)

3. RESIDUAL ECHO POWER ANALYSIS 

For simplicity, we assume the nonlinear loudspeaker and 

linear room impulse response are time invariant. The near 

end signal only contains a white Gaussian noise 

(WGN), double talk is not present.  Here, in order to 

distinguish convergence rate of orthogonal and power series 

polynomials we will derive the convergence rate under the 

assumption of perfect linear coefficient i.e., = .

Hence the estimation error produced by the nonlinear AEC 

filter is expressed as       

v(n)

(n)h h

3.1. Analysis of nonlinear coefficient

We denote the nonlinear coefficient weight error  [4] by 

a (n+1) (n+1)a a

and using (2) we may rewrite asa (n+1)
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According to the direct averaging method, when a 1
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f and is the correlation 

matrix of . By applying the unitary similarity 

transformation, is transformed into a simpler form: 
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 then we may transform (3) into the form  
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3.2. Analysis of residual echo power 

The mean square error (i.e., residual echo) is given by  
2

J(n)=E e(n)

2 T T T
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Assume the variation of  is slow compared with that 

of , hence
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From (4) and (6), the mean square error can be written as  
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3.3. Eigenvalues and the basis of nonlinear component 

According to (7) we have known that the convergence rate 

depends on the eigenvalues i , and the smallest eigenvalue 

dominates the convergence rate. Next we will show that a 

smaller eigenvalue spread spread (faster convergence) can 

be achieved by reducing the correlation among the bases. 

For simplicity, we assume the nonlinear function is an odd 

function and only contains first and third orders. We 

have  , where c is the correlation between T

11

(n)
33

r  c

c   rP h
R

31p  and p  and the spread =
2

11 33 11 33

2 2
11 33 11 33

1+ 1-4(r r -c )/(r +r )

1- 1-4(r r -c )/(r +r )

2

. When 

input is uniformly distributed and
2

2
=1h , spread is 27.78 

and min

max min

is 0.03481 for power series polynomial 

and spread  is 14.55 and min

max min

 is 0.06417 for 

orthogonal polynomial.  of the orthogonal 

polynomial is about one half of the power series. It is easy 

to see, the smallest eigenvalue dominates the convergence 

rate, i.e., the smaller

spread

min , the slower convergence rate. 

When c is equal to zero we will have the smallest 

eigenvalue spread. It means that when 1p is orthogonal to 3p ,

the fastest convergence rate can be attained. 

4. SIMULATION RESULTS 

To evaluate the performance of the orthogonal polynomial 

we compare the simulated and theoretical curves. In the 

following simulation we let the step size = =0.05,

=1, SNR=26 dB, the length of the room impulse response 

is set to be 128, which is identical to number of taps of the 

linear filter, the nonlinear filter order is 3. In the first 

experiment we let the input signal be uniformly distributed 

and the orthogonal polynomial series can be generated using 

Gram Schmidt orthonormalization in the interval (-1,1) with 

the weighting function 1. The first 3 order orthogonal basis 

are given as follows: 

h a

0p ( ) 1x , 1p ( )x x , 2
2

1
p ( )

3
x x 3

3

3
p ( )

5
x x x        (8) 

As shown in Fig 2, the theoretical curves are plotted from (7) 

the simulation results agree well with the theoretical curves. 

The orthogonal polynomial AEC indeed converges faster 

due to its smaller eigenvalue spread. 

Fig. 2 Theoretical and simulated residual error power curves 

under the assumption of perfect linear coefficient for 

uniform input.   

Without the assumption of perfect linear coefficients, the 

simulation results are shown in Fig 3. Because the linear 

and nonlinear coefficients errors affect each other in the 

cascade structure, it is difficult to perform the joint error 

analysis theoretically. In Fig 3, when the nonlinear 

coefficients have faster convergence, the joint error will also 

have faster convergence. Hence, the overall performance of 

nonlinear AEC with orthogonal polynomial is better than 

that with power series. 

Fig. 3 Simulated residual error power curves without 

assumption of perfect linear coefficient for uniform input. 

Next, we let the input signal be zero mean WGN. The 

parameters are the same as the first experiment except for 

the orthogonalized polynomial basis. When the input signal 

is WGN, the orthogonal basis also can be found by Gram 
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Schmidt orthonormalization in the interval (-1,1) with the 

Gaussian weighting function. The orthogonal polynomial 

basis of order 3 can be shown as follows 

0p ( ) 1x , 1p ( )x x ,
2 2

2p ( ) xx x ,
3 2

3p ( ) 3 xx x x

We can find the basis is dependent on the input signal. 

However, in practical implementation, 
2
x  can be obtained 

by first order recursion procedure described by  

E[ (n+1)] =  E[ (n)] +(1- ) (n)p px x
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where is the forgetting factor. Although the basis is input-

dependent it needs to calculate the moment of input signal at 

each iteration, the computational complexity is slightly 

increased. The simulation results are shown in Fig 4. 

Fig. 4 Theoretical and simulated residual error power curves 

under the assumption of perfect linear coefficient for WGN 

input

The joint coefficients errors are also difficult to analyze 

when the input signal is WGN. In Fig 5 we only present the 

simulation results. According to the first two experiments, 

in either case of a uniform or Gaussian input, the nonlinear 

AEC has better performance when its nonlinear coefficients 

have faster convergence rate.

Fig. 5 Simulated residual error power curves without 

assumption of perfect linear coefficient for WGN input. 

In the last simulation we compare the performance between 

the orthogonal polynomial in (8) and the power series 

polynomial when the input is a real speech signal. The 

probability density function of speech signal is neither 

uniform nor Gaussian, therefore (8) may not have perfect 

orthogonality but it still has better performance than the 

power series polynomial as shown in Fig 6. The 

performance is measured by ERLE, defined as  
2

10 2

E[d (n)]
ERLE(dB) = 10 log

E[e (n)]
.

Fig. 6 ERLE comparison between orthogonal and power 

series polynomial under the assumption of perfect linear 

coefficients for speech input.

5. SUMMARY 

In this paper we have presented the orthogonal basis 

polynomial for nonlinear AEC. For both uniform and 

Gaussian inputs the simulation results agree well with 

theoretical curves. Convergence rate analysis indicates that 

a smaller eigenvalue spread is closely related to the 

correlation between polynomial bases. The proposed 

orthogonal basis has better performance than conventional 

power basis without increasing computational complexity.  
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