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ABSTRACT

We propose a method that estimates frequency component struc-
tures from music signals with noise and restores them. Restoring
frequency components hidden by other interfering sounds is a dif-
ficult problem but has become important in various music informa-
tion processing systems for melody extraction and audio retrieval.
The proposed method is based on a probabilistic model of a fre-
quency component structure represented as a Markov random field.
To design an appropriate model, we introduce a supervised learn-
ing technique based on the maximum entropy model. We tested the
method using musical audio signals generated from notes played
by real instruments and noises. For four of six instruments, the pro-
posed method achieves F-measures greater than 0.44 even in peri-
ods where signals are replaced by noises. We also evaluated the
method in terms of feature distortion recovery in audio fingerprint
matching tasks. The results show that the proposed method clearly
reduces the effect of noise on the similarity values.

1. INTRODUCTION

Frequency components, which comprise a fundamental fre-
quency (F0) and its overtones, are time continuous peaks on a
sound spectrogram. Their structure is an important property of in-
strumental and vocal sounds. Many systems for music information
processing use this property. For example, systems for melody and
bass-line extraction [1] and estimation of multiple F0s [2] often use
harmonic structures.

Therefore, estimation of frequency component structure is an
important task for various music information processing systems.
However, the implementation is not straightforward because the
structure can be easily broken by interfering factors caused by
percussive sounds or noises.

In this study, we focus on the problem of estimating frequency
component structures, including hidden or erased sections, from
spectrograms of musical audio signals with noise.

Various methods which extract the frequency components have
been developed for partial tracking tasks, e.g. methods using the
Kalman filter [3] and Hidden Markov models [4], mainly in the
context of analysis/synthesis. Based on a probabilistic scheme, we
specifically address the case where the spectral peaks are intermit-
tently hidden or erased by noise or other irregular sounds.

Frequency component structures have such a microscopic charac-
teristic that the state of a point on a spectrogram is strongly affected
by the states of adjacent points. We adopt a Markov random field
(MRF)[5] to represent probabilistic properties of frequency compo-
nent structures because it can naturally deal with the microscopic
characteristic in a probabilistic form.

In MRF applications, it is essential to design a posterior density

Fig. 1. Estimation of a frequency component structure by the pro-
posed method. A spectrogram of a musical audio signal (A), a
restored frequency component structure (B), and estimated noises
(C).

model of a state when its vicinity states are given. In addition, it is
important to determine a set of appropriate model parameters. For
this purpose, we introduce a supervised learning method. We use
a maximum entropy model (MEM) [6] to represent and learn the
posterior density. In the model, the posterior density is represented
by a function proportional to the exponent of a linear combination
of binary values.

Recently, Reyes-Gomez et al. proposed a method also using
probabilistic models that can restore spectral powers when some
regions on a spectrogram are missing [7]. Based on a learning
scheme, our method does not require explicit transition models
given in advance. In addition, ours estimates frequency component
structures without prior knowledge on noise locations.

2. ESTIMATING FREQUENCY COMPONENT
STRUCTURES

Many musical sounds have frequency component structures, typ-
ically harmonic structures, that reflect the characteristics of instru-
ments or vocal mechanisms. These structures are represented as
peaks in the frequency direction extending in the time direction on
a sound spectrogram.

In practice, a musical sound may contain various kinds of tran-
sient and irregular components, as in percussive sounds and noises.
In addition, the original instrumental or vocal sounds themselves
have irregular components such as those appearing at the onset of
a note. For simplicity, we treat these components as noises in this
study.
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These noises are represented as irregular patterns on a sound
spectrogram [Fig. 1 (A)]. The objective of this study is to obtain
the frequency component structure [Fig. 1 (B)] in a sound spec-
trogram of musical audio signals containing noise. We represent
a frequency component structure as a frequency × time state ma-
trix, ΘF, which represents the existence of frequency components
by binary values 0/1. The size of the matrix ΘF is the same as X,
which is an observation matrix comprised of spectral powers of the
original audio signal.

In order to recover hidden or erased frequency components, com-
ponent interpolation is needed as well as noise component suppres-
sion. Thus, we formulate the following a posteriori probability
maximization model :

Θ̂ = arg max
ΘF,ΘN

P (ΘF,ΘN|X). (1)

In this formulation, we introduce an auxiliary matrix ΘN, which
is a binary state matrix that represents components originating in
noise, to reflect a difference in the generation mechanisms of obser-
vation X according to the existence of noise.

In this paper, we represent the elements of matrices X, ΘF,
and ΘN as xij , θF

ij , and θN
ij , respectively. Borrowing terminology

from image processing, we call each pair comprising a frequency
and time component, namely, a point (i, j) on the spectrogram, a
“pixel”. The two kinds of states that are represented by ΘF and
ΘN are called the “frequency component state” and “noise state,”
respectively.

In the rest of this paper, we use notations Θ and θij to simultane-
ously represent two state matrices, ΘF and ΘN, and their elements,
θF

ij and θN
ij .

3. METHODS

3.1. Defining a probabilistic model using MRF

Focusing on a small region around a pixel, we find that a fre-
quency component has following strong characteristics: if the pixel
is involved in the frequency component structure, neighboring pix-
els in the frequency direction tend to be excluded from frequency
components while those in the time direction tend to be included.

The MRF is suitable for representing such characteristics in the
form of probabilistic model. It assumes that states of a pixel can
be characterized only by the states of neighboring pixels and intro-
duces “potential functions,” V o and Vc, to reflect such characteris-
tics.

To define a model, we consider a neighborhood region around a
pixel (i, j), which consists of the pixel (i, j) and its neighboring
pixels. Suppose that Gij denotes a set of neighboring pixels around
(i, j), excluding (i, j) itself. Then, appropriate potential functions,
V o(θij , θi′j′ , xi,j , xi′j′) and Vc(θij , θi′j′), (i′, j′) ∈ Gij , are de-
fined for all cliques that include the pixel at (i, j). These functions
correspond to likelihood P (X|Θ) and prior distribution P (Θ), re-
spectively. A clique c means a subset of pixels within a neigh-
borhood region such that every pixel in c is also included in the
neighborhood region of the rest of the pixels in it.

The conditional distribution P (θij |θi′j′ , xi,j , xi′j′ , (i′, j′) ∈
Gij) is represented as

P (θij |θi′j′ , xi,j , xi′j′ , (i′, j′) ∈ Gij)

∝ exp

⎡
⎣− 1

T

⎛
⎝V o(θij ,θi′j′ ,xi,j ,xi′j′) +

∑
c: (i,j)∈c

Vc(θij , θi′j′)

⎞
⎠

⎤
⎦, (2)

where T is a parameter that controls the sharpness of the distribu-
tion. The neighborhood region may be defined by the Euclidean
distance [5]. Here, we simply adopt a rectangular region composed
of forward and backward m ( n ) pixels along the direction of fre-
quency ( time ) [Fig. 2 (A)].

In order to estimate the state matrix Θ̂ that has maximum poste-
rior density, we use Gibbs sampling and simulated annealing, which
iteratively generate θij according to P (θij |θi′j′ , xi,j , xi′j′ , (i′, j′) ∈
Gij), moving the focusing pixel and its neighborhood region. This
process gradually sharpens peaks of the distribution.

In the image processing field, potential functions Vc and V o are
often defined manually using a priori knowledge about the objects.
However, the justification of such models is not straightforward and
empirical parameter tunings are unavoidable.

3.2. MEM

To avoid such problems, we used a supervised learning method,
the MEM, which can directly estimate the posterior distribution
P (ω|D) from training data. Here, D denotes a data sample and
ω a class or category. In this study, category ω corresponds to θij

and each sample D corresponds to each pixel at (i, j) on a spectro-
gram. We assume sample D is characterized only by the states and
observations within the neighborhood region except for the state at
(i, j); namely, θi′j′ , xi′j′ , (i′, j′) ∈ Gij , and xij [Fig. 2 (A)]. In
what follows, we outline how the MEM is employed.

Firstly, we introduce multiple feature functions fl(D, ω), (l =
1, 2, ..., F ) that take binary values (0 / 1). Each function is defined
by a combination of data D and a class ω. Then, we want to esti-
mate P (ω|D) using feature functions fl(D, ω). When training data
are given, we can calculate the expectation of each feature func-
tion, Ẽ(fl), by counting the number of cases where fl(D, ω) = 1
in the training data. The basic idea of the MEM is to find the
optimal P (ω|D) that maximizes the entropy of joint distribution
P (ω, D) = P (ω|D)P (D) under the condition that the expecta-
tions of fl(D, ω) calculated from P (ω|D) are equal to Ẽ(fl) for all
l.

The solution to the above maximization can be written as

PΛ(ω|D) =
1

Z(D)
exp

(∑
l

λlfl(D, ω)

)
, (3)

where Z(D) is a normalization term and Λ = (λ1, ...λF ) are model
parameters to optimize. The Λ can be estimated by an improved it-
erative scaling method [6], which is a kind of hill-climbing method.

3.3. Defining feature function for MEM

A feature function fl(D, ω) is defined with respect to ω and data
D, where ω = θij . To extract features for each pixel, information
from θF

i′j′ , θN
i′j′ , xi,j , and xi′,j′ , (i′, j′) ∈ Gij are available.

In preparation for defining fl, we introduce a static feature func-
tion gl′(θi′j′ , xi′j′ , xij), (i′, j′) ∈ Gij , which also takes a binary
value and does not depend on ω = θij .

Figure 2 (B) shows how features from states and observations are
extracted. First, we simply use the value of the frequency compo-
nent and noise state, θF

i′j′ and θN
i′j′ , (i′, j′) ∈ Gij , as shown in Fig.

2 (B)–(i) and –(ii). These two states yield (2m + 1)(2n + 1) − 1
static feature functions.

Power peaks in the direction of frequency provide rich informa-
tion about frequency components, especially in a clear sound with-
out noise. We use binary information in order to represent whether
each pixel is a power peak or not. We represent it as xp

ij and Xp in
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Fig. 2. A neighborhood region around a pixel at (i, j) (A) and
extracted values of static feature functions (gl′ ) from states and ob-
servations within the neighborhood region around a pixel at (i, j)
(B).

a matrix form, which yields (2m + 1)(2n + 1) static feature func-
tions [Fig. 2 (B)–(v)].

Spectral powers xij and xi′j′ , (i′, j′) ∈ Gi′j′ take real values. We
allocate one of b bins to each xij or xi′j′ , (i′, j′) ∈ Gi′j′ according
to the spectral power [Fig. 2 (B)–(vii)]. This yields b(2m+1)(2n+
1) static feature functions.

For ΘF, ΘN and Xp, we introduce the negative of each value
[Fig. 2 (B)–(iii), –(iv), and –(vi)]. These values are used in order to
keep the sum of all fl(D, ω) through the training samples constant
and thereby simplify the MEM learning [6].

From the above discussion, a feature function fl = fωFωNl′ can
be defined for all four combinations of frequency component and
noise states, ωF = 0/1 and ωN = 0/1, using static feature functions
gl′ as follows:

fωFωNl′(D, θF
ij , θ

N
ij) =

{
gl′(D) if θF

ij = ωF and θN
ij = ωN,

0 otherwise.
(4)

4. EXPERIMENTS

We evaluated the effectiveness of the proposed method in terms
of frequency component restoration accuracy. We performed two
experiments. In the first experiment, precision and recall values
with respect to frequency component restoration were measured,
and in the second, recovery from audio feature distortion was mea-
sured.

4.1. Preparing training and test data

To generate training data, we composed artificial sounds of mu-
sical notes that are constituted only by harmonics with a constant
amplitude.

For the test data, we used acoustic instrumental sounds of
musical notes in the RWC Musical Instrument Sound Database
(RWC-MDB-I-2001 No. 01-50) [8]. We chose five instrumental
sounds and one vocal sound, namely, piano, violin, flute, trumpet,
marimba, and alto (vocal), with the normal playing style.

First, we prepared 3.5-sec and 7.5-sec musical phrases, by con-
necting sound segments obtained above, for training and testing, re-
spectively. Next, for both musical phrases, we made noisy sounds
artificially by replacing certain sections with Gaussian noise. These

Table 1. Performance of the proposed method. Values in paren-
theses indicate the results for simple peak extractions without the
proposed method.

(A) Whole period (7.5 sec.)

instrument precision recall F-measure

piano 0.60 (0.26) 0.80 (0.88) 0.69 (0.41)
violin 0.63 (0.35) 0.64 (0.87) 0.64 (0.50)
flute 0.58 (0.32) 0.60 (0.88) 0.59 (0.47)

trumpet 0.61(0.32) 0.60 (0.87) 0.61(0.47)
alto 0.50 (0.31) 0.36 (0.86) 0.42 (0.45)

marimba 0.28 (0.12) 0.28 (0.85) 0.28 (0.21)

(B) Periods where audio signals are replaced by noises
(1.1 sec. in total)

instrument precision recall F-measure

piano 0.44 (0.07) 0.52 (0.58) 0.47 (0.12)
violin 0.48 (0.11) 0.40 (0.57) 0.44 (0.18)
flute 0.47 (0.08) 0.42 (0.57) 0.44 (0.14)

trumpet 0.50 (0.09) 0.41 (0.56) 0.45 (0.15)
alto 0.33 (0.09) 0.23 (0.55) 0.27 (0.15)

marimba 0.09 (0.03) 0.13 (0.47) 0.11 (0.05)

sound data were used in order to generate observation matrices X
in all experiments.

All audio signals were sampled at Fs = 11, 025 Hz. Each sam-
pled signal was divided into frames, each having 1,024 samples. A
fast Fourier transform (FFT) was calculated for each frame with the
Hanning window. Spectral powers in decibels were used in com-
posing the observation matrix X.

4.2. Evaluation of the accuracy

For the training data, two parts of the original 3.5-sec musical
sound were replaced by 200- and 300-msec-long Gaussian noises.
For the test data, we used five short Gaussian noises, which have
various durations of 150 to 300 msec.

To make the ground truth for frequency component states ΘF,
power peaks along the frequency axis having power greater than a
threshold were extracted from spectrograms of the original sound
without noise.

Power peaks in FFT frames that overlap noise sections and those
that do not appear in the spectrograms of the original sound without
noise were extracted for the ground truth for noise states ΘN.

To create feature functions associated with spectral powers, X in
Fig. 2 (B)–(vii), the value of spectral powers were normalized in
the direction of frequency into a range of [0 1] using the powers of
100 neighboring frequency components.

In this experiment, the size of the neighborhood m and n was set
at 3 and the number of bins, b, used to create feature functions for
MEM was 3.

We examined 509 (frequency) × 90 (time) pixels and calculated
the accuracy of estimated θF

ij . The performance was measured by
precision, recall, and the F-measure. The F-measure is the harmonic
mean of the precision and the recall.

Table 1 (A) shows the performance of the proposed method for
the whole 7.5-sec sound. Table 1 (B) shows the results calculated
only for the sections replaced by noises. Parenthetic values are the
results from simple peak extraction.

For four instruments, namely, piano, violin, flute, and trumpet,
the precision, recall, and F-measure are greater than 0.44 even in
the noise sections. And the proposed method improved the perfor-
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Fig. 3. Relationship between the number of 200-ms noise segments
and the similarity to musical sounds without noise for piano (A), vi-
olin (B), flute (C), trumpet (D), alto (E), and marimba (F). “MRF”
indicates the proposed method and “peak”indicates the peak extrac-
tion method.

mance for all instruments in the precision and F-measure.
Simple peak extraction produced many extra peaks, especially in

the noise regions. This resulted in comparatively higher recall val-
ues, but the precision values were severely degraded. In “marimba”,
all measures are very low. This is due to the evaluation method: the
marimba has few harmonics and includes many irregular compo-
nents. Therefore, the irregular components remained in the ground
truth.

4.3. Evaluation in terms of feature distortion

Assuming that the proposed method will be applied to prepro-
cessing in audio fingerprinting systems, we examined how it re-
duces the effects of noise on the similarity between the restored
sounds and the original noiseless sounds.

To calculate the similarity, features completely different from the
feature functions in MEM have to be extracted from sound data.
We used the feature extraction method developed by Kashino et al
[9]. That is, feature vectors were composed of the power in several
frequency bands with a constant width along the frequency axis in
a log-scale.

The experimental procedure was as follows:

• Spectrogram X was masked by an estimated frequency com-
ponent state matrix ΘF and the estimated frequency compo-
nents from X was extracted.

• Seven frequency bands having a constant width along the
frequency axis in a log-scale were made using the 300 - 3000
Hz region of the masked spectrograms.

• For each time frame, the average power of each band was
calculated and a feature vector consisting of the average
power at each frequency band and the time frame was
generated.

Here, we simply used these feature vectors for the calculation of

similarities. The cosine measure was used as the similarity.
The evaluation was performed using data where from one to six

200-msec-long Gaussian noises were substituted in the original
sound, and the same experimental conditions as in the accuracy
evaluations were used.

Figure 3 shows the relationship between the number of noise sec-
tions and the similarity to the sounds without Gaussian noise. It is
clearly shown that with the proposed method the similarity mea-
sures for all instruments remain nearly unaffected by the amount
of noise, whereas, without the proposed restoration, they decrease
monotonically when the amount of noise increases. From this re-
sult, we anticipate that the proposed method will greatly improve
the robustness of audio search based on fingerprinting.

5. CONCLUSION

We have proposed a method that restores frequency component
structures from musical sound signals containing noise. The
method exploits a probabilistic model represented by a Markov
random field. Using a supervised learning method, based on a
maximum entropy model, we resolved the difficulties in designing
potential functions and in tuning parameters. The experimental
results showed that the method greatly improves the accuracy of
frequency component estimation in terms of F-measures, especially
in sections where the original signals are replaced by noise. In
addition, the results for similarity measures clearly indicated that
the proposed method has the potential to improve the performance
of music information retrieval systems based on fingerprinting.
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