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ABSTRACT

Dynamic  Time Warping  (DTW) finds the  best  global  match  or 
alignment  between  two  sequences  by  ‘time’  warping  them 
optimally. Since the algorithm uses the whole sequences, it can be 
very demanding in calculation cost and memory. In particular, this 
limits the size of the sequences which can be aligned. In this paper 
a  novel  algorithm  is  presented,  Short-Time  Dynamic  Time 
Warping (STDTW), which requires  much less memory because 
optimization is done iteratively on portions of the sequences. The 
very  remarkable  property  of  the  algorithm  is  that  under  some 
weak hypothesis, it produces the same globally optimal solution 
as the classical DTW. As an example, STDTW is applied to Score 
to  Audio  Alignment  which links events  in  a  musical  score  and 
points on the audio performance time axis.

1. INTRODUCTION

Let X and Y be two sequences of elements xm and yn and of length 
M and N respectively:

X = x1, x2, ...,xm, ..., xM = {xm, m=1, …, M}      (1)
Y = y1, y2, ...,yn, ...,  yN = {yn, n=1,  …,  N}           (2)

The alignment of an element xmk with an element ynk is defined by 
a couple ak = (m k,n k) , 1 ≤  m k ≤ M and 1 ≤  n k ≤ N.
An  alignment  of  one  sequence  with  the  other  is  defined  by  a 
sequence A = a1, a2, ..., ak, ...,aK      (3)
such that the sequences {mk, k=1, …, K} and {nk, k=1, …, K} are 
non decreasing (m k-1 ≤  m k,  n k-1 ≤  n k). If one considers a plane 
with  indices  m on  the  abscissa  and  n on  the  ordinate,  A also 
defines a ‘path’ in this plane. 
In Dynamic Time Warping (DTW [1]), indices n and m are called 
traditionally ‘time’ because one of the first applications was for 
speech and the sequences were analysis  data at  successive time 
instants. DTW is an algorithm which finds the best alignment (or 
match), between two (supposedly time) sequences. The alignment 
is  considered  as  a  non-linear  ‘warping’  of  one  (or  the  other) 
sequence  along  ‘time’.  To  define  the  best  alignment,  a  (local) 
distance between an element xmk and an element ynk , d(xmk, ynk), is 
first chosen. To simplify notation, let us denote this distance
d(mk, nk). Then, the global distance along an alignment or path A 
is the sum of the weighted local distances along  A, i.e. between 
the sequence elements which are aligned:

D X,Y,A
k= 1

K
wk d m k ,nk , (4)

where the wk are weights to be defined in the following.
The optimal alignment  AO is the one which minimizes the global 
distance D(X, Y, A).
Score to Audio Alignment links events in a score and points on the 
audio performance time axis. The audio performance is a digital 
recording (a signal) of the score played by  musicians, which is 
referred to as the performance. Here the score is represented by a 
Standard MIDI File (SMF). An alignment links notes of the score 

with their position in the performance, typically the beginning and 
end of the notes. This is not a trivial task since the exact tempo is 
not known and not constant, the notes are never played exactly as 
written in the score, and finding notes in a complex polyphonic 
performance is extremely difficult. The performance audio signal 
can be coded as a sequence of frequency analysis data along time, 
and the score is a sequence of notes and chords. Therefore, DTW 
provides  a  globally  optimal  alignment  of  the  score  to  the 
recording of a performance. But DTW computes the optimal path 
on the entire sequences and thus necessitates a huge amount of 
memory. As an example, suppose the duration of the performance 
is 15’. For a very precise alignment, the frequency analysis should 
be done approximately every 2.5 ms. This amounts to a sequence 
of 360000 elements. If there is a mean of 8 notes or chords per 
second, this leads to a sequence of 7200 elements. Then the usual 
DTW  algorithm  requires  arrays  of  size  180000*7200=2.592  G 
cells.
However,  it  is  clear  that  the  entire  score  and  the  entire 
performance  are  not  necessary  to  perform a  correct  alignment. 
Most  of  the time,  a  shorter  portion is  enough,  provided  that  it 
contains  a  sufficient  number  of  notes  and  that  it  cannot  be 
mistaken for another (unambiguity). There are short-time versions 
of DTW that can be applied iteratively on shorter portions [2]. But 
the limits of these portions in the score and in the performance are 
obviously  not  known  since  the  alignment  is  not  known.  Also, 
while DTW finds the globally optimal alignment, these short-time 
versions  do  not  guarantee  that  the  short-time  solution  is  the 
globally optimal one.
To fulfill these requirements, we have designed a new algorithm, 
called  STDTW  (Short-Time  Dynamic  Time  Warping),  which 
relies  on  a  short-time  alignment  and,  under  some  weak 
hypothesis,  provides  the  same  globally  optimal  solution  as  the 
classical global DTW algorithm. 
STDTW  iteratively  works  on  a  short-time  portion  of  the 
sequences and finds, however, at  each iteration a portion of the 
optimal  path.  This  means  that,  after  each  iteration,  the 
computation can be stopped, the path stored and the algorithm re-
started from the last point of the path, i.e. on a portion of the two 
sequences as if they where new sequences.
In other words, due to this nice property, the algorithm can be re-
initialized at a point of the optimal alignment path which has been 
determined before. This then allows the alignment of arbitrarily 
long sequences. In case of an interruption in the computation (e.g. 
system crash), the algorithm can be continued from the last point 
stored without having to start from the very beginning.
As mentioned above, the portions that can be aligned should be 
unambiguous.  More  precisely,  theses  portions  are  found 
automatically  by  the  algorithm.  This  means  that  the  STDTW 
automatically finds the shortest portions which are unambiguous, 
hereby providing some valuable information about the structure of 
the sequences.
Finally,  within  a  ‘real  time’  context,  STDTW  provides  the 
alignment  result  with  the  shortest  possible  delay  according  to 
unambiguity; this is as if one had ‘heard’ enough of the audio file 
(or whatever sequence) to be certain of the corresponding portion 
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of   score  (or  sequence).  A  well-known  real  time  alignment 
approach, more commonly known as Score-Following which uses 
Dynamic Programming, is presented in [3].

2. DYNAMIC TIME WARPING

Let us first briefly review the classical DTW algorithm. Let X and 
Y be two sequences of elements xm and yn and of length M and N 
respectively (1), (2). Let d(xmk, ynk) be the local distance between 
an element xmk and an element ynk. To simplify the notation, let us 
write this distance  d(mk,  nk). An alignment of one sequence with 
the  other  is  defined  by  a  sequence,  or  path,  A (3).  The  global 
distance  along  the  path  A is  the  sum  of  the  weighted  local 
distances  along  A,  i.e.  the  distances  between  the  sequence 
elements which are aligned (4).

2.1. Path Constraints

Possible paths A are limited by several constraints.

Endpoint Constraints force the warping path to start and finish in 
the opposite diagonal corner of the rectangle (m,n).

a1  = (1,1) (5)
aK  = (M,N) (6)

Monotonicity Constraints force the points ak to be monotonically 
placed in time.

If ak = (mk, nk) and ak-1 = (mk-1, nk-1) (7)

then mk - mk-1 ≥ 0 and nk - nk-1 ≥ 0 (8)

Local  Continuity  Constraints  force  the  possible  steps,  in  the 
warping  path,  to  adjacent  cells  (including  diagonally  adjacent 
cells).

If ak = (mk, nk) and ak-1 = (mk-1, nk-1) (9)

then mk - mk-1 ≤ 1 and nk - nk-1 ≤ 1 (10)

The DTW algorithm first calculates the augmented distance array 
adm of size MxN where  adm(m,n) is  the  cost  of the best  path 
from (1,1)  up to  (m,n).  The  value  adm(m,n) is  computed 

recursively by use of the local distance  d(m,n), of the weights  w 
and of the values  adm(i,j) in a neighborhood (i,j) of  (m,n) with 
i<m  and  j<n.  The  points  in  this  neighborhood  are  called  the 
predecessors of (m,n) (see figure 1).
There  exist  different  types  of  local  constraints  and  the weights 
along the local  path branches can be  tuned in  one direction  or 
another  if  needed.  These  weights  [wv wh  wd] are  explained  in 

figure 1.   The different type names Type I, III and V follow the 
notation in [1]. 

Fig. 1 Local path constraint - Type V

In case of Type V, the accumulated distance to any point (m,n) is 
calculated recursively as in equation (11), with d(m,n) abbreviated 

to λ. For Score to Audio Alignment, Type V was found to be the 
best  [4].  Type  V  constraints  the  mean  slope  of  path  A to  be 
between 3 and 1/3. Indeed, a performance very rarely has tempo 
variations greater than 3 or less than 1/3 with respect to the mean 

tempo. Therefore, Type V provides good alignment while avoiding 
vertical or horizontal paths. The standard values for the local path 
weights [wv wh wd] are [1 1 2] for Type V. Our experiments showed 
that lowering wd is better since it favors the diagonal and prevents 
extreme slopes [4]. 

       (11)

2.2. Dynamic programming

There are exponentially many warping paths that satisfy the above 
conditions.  Dynamic  programming  is  a  fast  way  to  find  the 
optimal path, which minimizes the global distance, i.e. the total 
warping cost  adm(M,N).  It  relies  on  the Viterbi  algorithm with 
complexity  O(n2)  applied  on  the  adm array.  This  is  done  in  a 
backtrack  final  step  that  very  simply  computes  optimal 
predecessors from (M,N) to (1,1) (see [1] for details).
From now on we will only consider paths which are optimal from 
(1,1) to  a  certain  (m,n),  and  we  call  them  paths  without 
mentioning this restriction.

2.3. Range and Memory Reductions

2.3.1. Global path constraints
Type V constrains the slope to be between 3 and 1/3. Using this 
slope  constraint  leads  to  a  reduced  warping  window  which  is 
sometimes referred to the Itakura Parallelogram.

2.3.2. Path Pruning
In  our  experiments,  to  reduce  the  computation  time  and  the 
resources needed, at every iteration m we keep only the best paths 
by pruning the paths which have an augmented distance adm(m,n) 
greater than a given threshold θp. This threshold is dynamically set 

using  the  minimum  of  the  previous  adm row.  Global  path 
constraints and Path Pruning finally define a corridor (see 
figure 3) which limits the possible paths.

2.3.3. Shortcut Path
In  some cases,  one is  interested only in the alignment  of  note-
onset times and not by the evolution within a note. In such cases, 
one only needs to keep in memory all the corresponding shortcut 
paths, as presented in [4].

3. LIMITS

Even if calculation and memory costs have been reduced by using 
the Range and Memory Reductions presented in section 2.3, we 
found that the alignment was only feasible for polyphonic pieces 
of approximately 5 minutes and 5000 notes maximum. The main 
problem is  the memory  cost,  since all  predecessors  have  to  be 
stored for calculating the final backtrack from  (M,N) to  (1,1) to 
obtain the globally optimal warping path.
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4. SHORT-TIME DYNAMIC TIME WARPING

In general it is not possible to find the globally optimal alignment 
without  calculating  all  accumulated  distances  and  saving  all 
corresponding predecessors.  The  problem is  now to replace  the 
global  optimization for  the entire sequence by a short-time,  i.e. 
local, optimization, and obtain the same solution.

4.1. Suboptimal Approaches

There have been many approaches for a short-time alignment in 
the past, particularly in speech recognition [2]. To determine the 
short-time alignment, a smaller window is slid from the beginning 
to the end, obtaining only approximately the same solution as the 
global one. 
By  using  a  smaller  window,  the  problem  of  relaxation  of  the 
endpoint constraints has to be solved. The main problem is, that 
the short-time alignment will be in general suboptimal if the path 
is not near the diagonal [2].

4.2. Optimal Approach

With respect to the initial constraints, it is obvious that all paths 
have to have a common point at least at (1,1). In figure 3 one can 
see all  backtracks in  the corridor  from a given m (audio frame 
index). There appear to be a portion common to all  paths from 
point  (1,1) up to the so called  fusion point where all paths fuse. 
There is only one path which goes from (1,1) to the fusion point. 
This path is therefore a part of the optimal path from  (M,N) to 
(1,1), so it is globally optimal. 
Now suppose  one  path  can  not  cross  an  other  one.  Then  it  is 
sufficient to only calculate the two backtracks from rmin and rmax 

(left and right corner of the corridor, figure 3) to determine the 
fusion  point  and obtain a  part  of  the global  optimal  path from 
(1,1) to the fusion point. For Type I it is clear that paths can not 
cross each other (principle of optimality [5]). For Type V this does 
not seem obvious. From now on, let us now suppose that 
[wv wh wd] = [1 1 1].

Fig. 3 All backtracks inside the corridor

4.2.1. No crossing paths with Type V
Suppose  one  knows  an  optimal  backtrack  path  from  the  point 
(M,N) to the point (m,n). We then want to prove that this path can 
not cross another optimal path at any of the direct predecessors of 
(m,n), i.e. those below and left of  (m, n) (figure 1).  adm(m,n) is 
defined recursively by equation (11). It is obvious that the paths 
won't cross, neither on  (m,n),  nor on any of the predecessors of 
(m,n) (principle of optimality [5]). But this does not prove that a 
crossing  cannot  occur  at  other  points  on  horizontal  line  m  or 
vertical line n. To prove this, let  us separate the paths, between 
(m,n) and the direct  predecessors,  into two  classes,  class  1 and 
class 2  (figure 5).

Fig. 5 Class 1 and Class 2

The paths of class 1 can only be crossed at the points (m,n-1) or 
(m,m-2).  Let us show that they cannot be crossed by a path of 
class 2. If this would happen, then the path from (i,j) to one of the 
predecessors in class 2 (j-1,i-1), (j-1,i-2), (j-1,i-3) would cross the 
path issued from (m,n) in one of the predecessors of class 1. It is 
sufficient to examine all the above mentioned possible crossings, 
one for one. To simplify notation, we write pk,l for local distance 

d(m-k,n-l) and  p k,l for  accumulated  adm(m-k,n-l).  The  local 

distance of the crossing point is noted C. We only show the  two 
pairs  of  inequalities  (12),  (13)  and  (15),  (16)  which  result 
immediately  from figures  6  and  7.  The  other  cases  lead  to  the 
same result as the inequalities (12), (13) of figure 6.
Each pair of inequalities  (with the exception of  the crossing of 
figure 7) simplifies to  C  = 0 (14). This means that a crossing is 
only possible if  the local distance at  the crossing point is  zero. 
This is excluded in our case because it is (in a probabilistic sense) 
“nearly  impossible”  that  this  distance  is  zero.  The  pair  of 
inequalities  (15),  (16)  of  figure  7  can  be  simplified  to  an 

inequality  p 2,3 =  p2,4+ p 1,3  (17)  which  is  also  “nearly 

impossible”. The complete proof is illustrated in detail in [6].

  
    

Fig. 6                                    Fig. 7

      (12)

      (13)

      (14)

      
      (15)

      (16)

      (17)

5. METHOD

In order to determine a part of the global optimal alignment it is 
sufficient  to  determine  the  fusion  point  of  the  two  backtracks 
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(figure 8: backtrack 1 and backtrack 2). The path from (1,1) to the 
fusion point is a part of the optimal path, because the backtracks 
can not cross each other as proved here above.
The  algorithm  proceeds  with  increasing  values  of  one  of  the 
indices, say  m=1, 2, 3, …. . In order to diminish the cost of two 
backtracks and of the fusion point determination, these are done 
only every mStep,  e.g. mStep = 100,  by  the modulo instruction 
here below.

Fig. 8 The two backtracks from rmin and rmax

Algorithm

For m=1 to M
• Calculation of adm(m,n) and storage of the optimal 

predecessor of (m,n).
If (modulo(m, mStep)) = 0

• Calculation of the backtracks from rmin and rmax and 

determination of the fusion point.

• At  this  point  it  is  only  necessary  to  keep  the 

predecessors inside the last backtracks and the part 
of  the  optimal  path  which  has  been  determined 
until the fusion point. All the previous data can be 
cleared.

If (memory cost to high)
• reinitialisation

• calculation of the short cut path

• reduction of the threshold of the path pruning

endFor

6. PERFORMANCE

The  new  Short-Time  Dynamic  Time  Warping  algorithm 
theoretically permits the alignment of a performance of arbitrary 
length, and to obtain the same globally optimal result as the global 
DTW algorithm.
It is possible to reinitialise the algorithm at the last fusion point 
which has already been determined. This gives the possibility to 
stop the algorithm, as well  as to restart the calculation (if some 
system  problem  occurred  for  instance)  without  having  to 
recalculate the whole alignment. Note that restarting the algorithm 
at  a  fusion  point  is  the  same  procedure  as  starting  from  the 
beginning  of  a  new  sequence  (the  fusion  point  becomes  the 
beginning point (1,1) of the new sequences to be aligned).
Furthermore,  fusion  points  fp have  other  very  interesting 
properties. First, the common path portion from (1,1) to fp is a part 
of the globally  optimal path from  (1,1)  to  (M,N).   Suppose one 
starts from fp. Then fp+1 is obviously the first next point such that 
the optimal alignment can be insured locally between  fp and  fp+1, 
i.e. when looking only at the data between fp and fp+1. That is, fp+1 is 

the first  next point such that the two sequences contain enough 
information for the alignment to be unambiguous between  fp and 
fp+1.  Therefore,  fusion  points  fp provide  some  interesting 
information about the structure of the sequences: they mark the 
segments which are unambiguous enough to be certainly aligned. 
For instance, this is easily observed in Score to Audio Alignment: 
new fusion points occur when there have been enough notes in the 
score  since  the  previous  fusion  point  for  this  part  of  the 
performance to be certainly attributed to the corresponding part of 
the score. By using the classical DTW algorithm the alignment is 
only possible for (approximately) polyphonic pieces of maximum 
5 minutes or 5000 notes respectively, because of the high memory 
costs. We implemented the new STDTW algorithm in MATLAB 
with a  MEX library which  has  been developed at  Ircam.  On a 
computer with 2 gigabyte of Ram, Jazz and Classic pieces up to 
10 minutes have been aligned. Since the Short Cut path has not 
yet been implemented, all predecessors inside the backtracks need 
to be stored. Better performance will be obtained when the Short 
Cut path will be implemented.

7. CONCLUSION

A  new  Short-Time  DTW  algorithm  has  been  designed  and 
implemented. It theoretically permits to align pieces of arbitrary 
length  while  providing  the  same  results  as  the  global  DTW 
algorithm.   It  can  easily  be  applied  on  portions  only  of  long 
pieces. It can also easily be restarted from an intermediate point 
without having to recompute the whole sequence alignment. Also, 
it  provides  an  interesting  insight  into  the  structure  of  the 

sequences to be aligned.

8. FUTURE WORKS

The Short  Cut  Path  will  be  implemented  in  the  program,  thus 
allowing an even better performance, in particular aligning longer 
pieces  and  faster.  The  new  algorithm  could  be  envisioned  for 
Score-Following.
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