
GLOBALLY OPTIMAL SHORT-TIME DYNAMIC TIME WARPING
APPLICATION TO SCORE TO AUDIO ALIGNMENT

Hagen Kaprykowsky, Xavier Rodet

Ircam – Centre Pompidou – Analyse Synthèse

ABSTRACT

Dynamic Time Warping (DTW) finds the best global match or
alignment between two sequences by ‘time’ warping them
optimally. Since the algorithm uses the whole sequences, it can be
very demanding in calculation cost and memory. In particular, this
limits the size of the sequences which can be aligned. In this paper
a novel algorithm is presented, Short-Time Dynamic Time
Warping (STDTW), which requires much less memory because
optimization is done iteratively on portions of the sequences. The
very remarkable property of the algorithm is that under some
weak hypothesis, it produces the same globally optimal solution
as the classical DTW. As an example, STDTW is applied to Score
to Audio Alignment which links events in a musical score and
points on the audio performance time axis.

1. INTRODUCTION

Let X and Y be two sequences of elements xm and yn and of length
M and N respectively:

X = x1, x2, ...,xm, ..., xM = {xm, m=1, …, M} (1)
Y = y1, y2, ...,yn, ..., yN = {yn, n=1, …, N} (2)

The alignment of an element xmk with an element ynk is defined by
a couple ak = (m k,n k) , 1 ≤ m k ≤ M and 1 ≤ n k ≤ N.
An alignment of one sequence with the other is defined by a
sequence A = a1, a2, ..., ak, ...,aK (3)
such that the sequences {mk, k=1, …, K} and {nk, k=1, …, K} are
non decreasing (m k-1 ≤ m k, n k-1 ≤ n k). If one considers a plane
with indices m on the abscissa and n on the ordinate, A also
defines a ‘path’ in this plane.
In Dynamic Time Warping (DTW [1]), indices n and m are called
traditionally ‘time’ because one of the first applications was for
speech and the sequences were analysis data at successive time
instants. DTW is an algorithm which finds the best alignment (or
match), between two (supposedly time) sequences. The alignment
is considered as a non-linear ‘warping’ of one (or the other)
sequence along ‘time’. To define the best alignment, a (local)
distance between an element xmk and an element ynk , d(xmk, ynk), is
first chosen. To simplify notation, let us denote this distance
d(mk, nk). Then, the global distance along an alignment or path A
is the sum of the weighted local distances along A, i.e. between
the sequence elements which are aligned:

D X,Y,A
k= 1

K
wk d m k ,nk , (4)

where the wk are weights to be defined in the following.
The optimal alignment AO is the one which minimizes the global
distance D(X, Y, A).
Score to Audio Alignment links events in a score and points on the
audio performance time axis. The audio performance is a digital
recording (a signal) of the score played by musicians, which is
referred to as the performance. Here the score is represented by a
Standard MIDI File (SMF). An alignment links notes of the score

with their position in the performance, typically the beginning and
end of the notes. This is not a trivial task since the exact tempo is
not known and not constant, the notes are never played exactly as
written in the score, and finding notes in a complex polyphonic
performance is extremely difficult. The performance audio signal
can be coded as a sequence of frequency analysis data along time,
and the score is a sequence of notes and chords. Therefore, DTW
provides a globally optimal alignment of the score to the
recording of a performance. But DTW computes the optimal path
on the entire sequences and thus necessitates a huge amount of
memory. As an example, suppose the duration of the performance
is 15’. For a very precise alignment, the frequency analysis should
be done approximately every 2.5 ms. This amounts to a sequence
of 360000 elements. If there is a mean of 8 notes or chords per
second, this leads to a sequence of 7200 elements. Then the usual
DTW algorithm requires arrays of size 180000*7200=2.592 G
cells.
However, it is clear that the entire score and the entire
performance are not necessary to perform a correct alignment.
Most of the time, a shorter portion is enough, provided that it
contains a sufficient number of notes and that it cannot be
mistaken for another (unambiguity). There are short-time versions
of DTW that can be applied iteratively on shorter portions [2]. But
the limits of these portions in the score and in the performance are
obviously not known since the alignment is not known. Also,
while DTW finds the globally optimal alignment, these short-time
versions do not guarantee that the short-time solution is the
globally optimal one.
To fulfill these requirements, we have designed a new algorithm,
called STDTW (Short-Time Dynamic Time Warping), which
relies on a short-time alignment and, under some weak
hypothesis, provides the same globally optimal solution as the
classical global DTW algorithm.
STDTW iteratively works on a short-time portion of the
sequences and finds, however, at each iteration a portion of the
optimal path. This means that, after each iteration, the
computation can be stopped, the path stored and the algorithm re-
started from the last point of the path, i.e. on a portion of the two
sequences as if they where new sequences.
In other words, due to this nice property, the algorithm can be re-
initialized at a point of the optimal alignment path which has been
determined before. This then allows the alignment of arbitrarily
long sequences. In case of an interruption in the computation (e.g.
system crash), the algorithm can be continued from the last point
stored without having to start from the very beginning.
As mentioned above, the portions that can be aligned should be
unambiguous. More precisely, theses portions are found
automatically by the algorithm. This means that the STDTW
automatically finds the shortest portions which are unambiguous,
hereby providing some valuable information about the structure of
the sequences.
Finally, within a ‘real time’ context, STDTW provides the
alignment result with the shortest possible delay according to
unambiguity; this is as if one had ‘heard’ enough of the audio file
(or whatever sequence) to be certain of the corresponding portion

V ­ 2491­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

of score (or sequence). A well-known real time alignment
approach, more commonly known as Score-Following which uses
Dynamic Programming, is presented in [3].

2. DYNAMIC TIME WARPING

Let us first briefly review the classical DTW algorithm. Let X and
Y be two sequences of elements xm and yn and of length M and N
respectively (1), (2). Let d(xmk, ynk) be the local distance between
an element xmk and an element ynk. To simplify the notation, let us
write this distance d(mk, nk). An alignment of one sequence with
the other is defined by a sequence, or path, A (3). The global
distance along the path A is the sum of the weighted local
distances along A, i.e. the distances between the sequence
elements which are aligned (4).

2.1. Path Constraints

Possible paths A are limited by several constraints.

Endpoint Constraints force the warping path to start and finish in
the opposite diagonal corner of the rectangle (m,n).

a1 = (1,1) (5)
aK = (M,N) (6)

Monotonicity Constraints force the points ak to be monotonically
placed in time.

If ak = (mk, nk) and ak-1 = (mk-1, nk-1) (7)

then mk - mk-1 ≥ 0 and nk - nk-1 ≥ 0 (8)

Local Continuity Constraints force the possible steps, in the
warping path, to adjacent cells (including diagonally adjacent
cells).

If ak = (mk, nk) and ak-1 = (mk-1, nk-1) (9)

then mk - mk-1 ≤ 1 and nk - nk-1 ≤ 1 (10)

The DTW algorithm first calculates the augmented distance array
adm of size MxN where adm(m,n) is the cost of the best path
from (1,1) up to (m,n). The value adm(m,n) is computed

recursively by use of the local distance d(m,n), of the weights w
and of the values adm(i,j) in a neighborhood (i,j) of (m,n) with
i<m and j<n. The points in this neighborhood are called the
predecessors of (m,n) (see figure 1).
There exist different types of local constraints and the weights
along the local path branches can be tuned in one direction or
another if needed. These weights [wv wh wd] are explained in

figure 1. The different type names Type I, III and V follow the
notation in [1].

Fig. 1 Local path constraint - Type V

In case of Type V, the accumulated distance to any point (m,n) is
calculated recursively as in equation (11), with d(m,n) abbreviated

to λ. For Score to Audio Alignment, Type V was found to be the
best [4]. Type V constraints the mean slope of path A to be
between 3 and 1/3. Indeed, a performance very rarely has tempo
variations greater than 3 or less than 1/3 with respect to the mean

tempo. Therefore, Type V provides good alignment while avoiding
vertical or horizontal paths. The standard values for the local path
weights [wv wh wd] are [1 1 2] for Type V. Our experiments showed
that lowering wd is better since it favors the diagonal and prevents
extreme slopes [4].

 (11)

2.2. Dynamic programming

There are exponentially many warping paths that satisfy the above
conditions. Dynamic programming is a fast way to find the
optimal path, which minimizes the global distance, i.e. the total
warping cost adm(M,N). It relies on the Viterbi algorithm with
complexity O(n2) applied on the adm array. This is done in a
backtrack final step that very simply computes optimal
predecessors from (M,N) to (1,1) (see [1] for details).
From now on we will only consider paths which are optimal from
(1,1) to a certain (m,n), and we call them paths without
mentioning this restriction.

2.3. Range and Memory Reductions

2.3.1. Global path constraints
Type V constrains the slope to be between 3 and 1/3. Using this
slope constraint leads to a reduced warping window which is
sometimes referred to the Itakura Parallelogram.

2.3.2. Path Pruning
In our experiments, to reduce the computation time and the
resources needed, at every iteration m we keep only the best paths
by pruning the paths which have an augmented distance adm(m,n)
greater than a given threshold θp. This threshold is dynamically set

using the minimum of the previous adm row. Global path
constraints and Path Pruning finally define a corridor (see
figure 3) which limits the possible paths.

2.3.3. Shortcut Path
In some cases, one is interested only in the alignment of note-
onset times and not by the evolution within a note. In such cases,
one only needs to keep in memory all the corresponding shortcut
paths, as presented in [4].

3. LIMITS

Even if calculation and memory costs have been reduced by using
the Range and Memory Reductions presented in section 2.3, we
found that the alignment was only feasible for polyphonic pieces
of approximately 5 minutes and 5000 notes maximum. The main
problem is the memory cost, since all predecessors have to be
stored for calculating the final backtrack from (M,N) to (1,1) to
obtain the globally optimal warping path.

V ­ 250

4. SHORT-TIME DYNAMIC TIME WARPING

In general it is not possible to find the globally optimal alignment
without calculating all accumulated distances and saving all
corresponding predecessors. The problem is now to replace the
global optimization for the entire sequence by a short-time, i.e.
local, optimization, and obtain the same solution.

4.1. Suboptimal Approaches

There have been many approaches for a short-time alignment in
the past, particularly in speech recognition [2]. To determine the
short-time alignment, a smaller window is slid from the beginning
to the end, obtaining only approximately the same solution as the
global one.
By using a smaller window, the problem of relaxation of the
endpoint constraints has to be solved. The main problem is, that
the short-time alignment will be in general suboptimal if the path
is not near the diagonal [2].

4.2. Optimal Approach

With respect to the initial constraints, it is obvious that all paths
have to have a common point at least at (1,1). In figure 3 one can
see all backtracks in the corridor from a given m (audio frame
index). There appear to be a portion common to all paths from
point (1,1) up to the so called fusion point where all paths fuse.
There is only one path which goes from (1,1) to the fusion point.
This path is therefore a part of the optimal path from (M,N) to
(1,1), so it is globally optimal.
Now suppose one path can not cross an other one. Then it is
sufficient to only calculate the two backtracks from rmin and rmax

(left and right corner of the corridor, figure 3) to determine the
fusion point and obtain a part of the global optimal path from
(1,1) to the fusion point. For Type I it is clear that paths can not
cross each other (principle of optimality [5]). For Type V this does
not seem obvious. From now on, let us now suppose that
[wv wh wd] = [1 1 1].

Fig. 3 All backtracks inside the corridor

4.2.1. No crossing paths with Type V
Suppose one knows an optimal backtrack path from the point
(M,N) to the point (m,n). We then want to prove that this path can
not cross another optimal path at any of the direct predecessors of
(m,n), i.e. those below and left of (m, n) (figure 1). adm(m,n) is
defined recursively by equation (11). It is obvious that the paths
won't cross, neither on (m,n), nor on any of the predecessors of
(m,n) (principle of optimality [5]). But this does not prove that a
crossing cannot occur at other points on horizontal line m or
vertical line n. To prove this, let us separate the paths, between
(m,n) and the direct predecessors, into two classes, class 1 and
class 2 (figure 5).

Fig. 5 Class 1 and Class 2

The paths of class 1 can only be crossed at the points (m,n-1) or
(m,m-2). Let us show that they cannot be crossed by a path of
class 2. If this would happen, then the path from (i,j) to one of the
predecessors in class 2 (j-1,i-1), (j-1,i-2), (j-1,i-3) would cross the
path issued from (m,n) in one of the predecessors of class 1. It is
sufficient to examine all the above mentioned possible crossings,
one for one. To simplify notation, we write pk,l for local distance

d(m-k,n-l) and p k,l for accumulated adm(m-k,n-l). The local

distance of the crossing point is noted C. We only show the two
pairs of inequalities (12), (13) and (15), (16) which result
immediately from figures 6 and 7. The other cases lead to the
same result as the inequalities (12), (13) of figure 6.
Each pair of inequalities (with the exception of the crossing of
figure 7) simplifies to C = 0 (14). This means that a crossing is
only possible if the local distance at the crossing point is zero.
This is excluded in our case because it is (in a probabilistic sense)
“nearly impossible” that this distance is zero. The pair of
inequalities (15), (16) of figure 7 can be simplified to an

inequality p 2,3 = p2,4+ p 1,3 (17) which is also “nearly

impossible”. The complete proof is illustrated in detail in [6].

Fig. 6 Fig. 7

 (12)

 (13)

 (14)

 (15)

 (16)

 (17)

5. METHOD

In order to determine a part of the global optimal alignment it is
sufficient to determine the fusion point of the two backtracks

V ­ 251

(figure 8: backtrack 1 and backtrack 2). The path from (1,1) to the
fusion point is a part of the optimal path, because the backtracks
can not cross each other as proved here above.
The algorithm proceeds with increasing values of one of the
indices, say m=1, 2, 3, …. . In order to diminish the cost of two
backtracks and of the fusion point determination, these are done
only every mStep, e.g. mStep = 100, by the modulo instruction
here below.

Fig. 8 The two backtracks from rmin and rmax

Algorithm

For m=1 to M
• Calculation of adm(m,n) and storage of the optimal

predecessor of (m,n).
If (modulo(m, mStep)) = 0

• Calculation of the backtracks from rmin and rmax and

determination of the fusion point.

• At this point it is only necessary to keep the

predecessors inside the last backtracks and the part
of the optimal path which has been determined
until the fusion point. All the previous data can be
cleared.

If (memory cost to high)
• reinitialisation

• calculation of the short cut path

• reduction of the threshold of the path pruning

endFor

6. PERFORMANCE

The new Short-Time Dynamic Time Warping algorithm
theoretically permits the alignment of a performance of arbitrary
length, and to obtain the same globally optimal result as the global
DTW algorithm.
It is possible to reinitialise the algorithm at the last fusion point
which has already been determined. This gives the possibility to
stop the algorithm, as well as to restart the calculation (if some
system problem occurred for instance) without having to
recalculate the whole alignment. Note that restarting the algorithm
at a fusion point is the same procedure as starting from the
beginning of a new sequence (the fusion point becomes the
beginning point (1,1) of the new sequences to be aligned).
Furthermore, fusion points fp have other very interesting
properties. First, the common path portion from (1,1) to fp is a part
of the globally optimal path from (1,1) to (M,N). Suppose one
starts from fp. Then fp+1 is obviously the first next point such that
the optimal alignment can be insured locally between fp and fp+1,
i.e. when looking only at the data between fp and fp+1. That is, fp+1 is

the first next point such that the two sequences contain enough
information for the alignment to be unambiguous between fp and
fp+1. Therefore, fusion points fp provide some interesting
information about the structure of the sequences: they mark the
segments which are unambiguous enough to be certainly aligned.
For instance, this is easily observed in Score to Audio Alignment:
new fusion points occur when there have been enough notes in the
score since the previous fusion point for this part of the
performance to be certainly attributed to the corresponding part of
the score. By using the classical DTW algorithm the alignment is
only possible for (approximately) polyphonic pieces of maximum
5 minutes or 5000 notes respectively, because of the high memory
costs. We implemented the new STDTW algorithm in MATLAB
with a MEX library which has been developed at Ircam. On a
computer with 2 gigabyte of Ram, Jazz and Classic pieces up to
10 minutes have been aligned. Since the Short Cut path has not
yet been implemented, all predecessors inside the backtracks need
to be stored. Better performance will be obtained when the Short
Cut path will be implemented.

7. CONCLUSION

A new Short-Time DTW algorithm has been designed and
implemented. It theoretically permits to align pieces of arbitrary
length while providing the same results as the global DTW
algorithm. It can easily be applied on portions only of long
pieces. It can also easily be restarted from an intermediate point
without having to recompute the whole sequence alignment. Also,
it provides an interesting insight into the structure of the

sequences to be aligned.

8. FUTURE WORKS

The Short Cut Path will be implemented in the program, thus
allowing an even better performance, in particular aligning longer
pieces and faster. The new algorithm could be envisioned for
Score-Following.

Acknowledgments

D.Schwarz, F. Soulez, J. Escribe, G. Peeters, P. Bernat, N. Orio.

10. REFERENCES

[1] L. R. Rabiner and Biing-Hwang Juang, Fundamentals of
Speech Recognition, Prentice Hall, Englewood Cliffs, 1993.

[2] J. Di Martino, “Contribution à la reconnaissance globale de la
parole: mots isolés et mots enchaînés,” PhD Thesis, Nancy,
France, 1984.

[3] R.B. Dannenberg, “An on-line algorithm for real-time

accompaniment,” in Proceedings of the International Computer

Music Conference, 1984, pp. 193–198.

[4] F. Soulez, X. Rodet and D. Schwarz, “Improving Polyphonic
and Poly-Instrumental Music to Score Alignment,” International
Symposium on Music Information Retrieval (ISMIR), Baltimore,
USA, 2003.

[5] R. Bellman, Dynamic Programing, Princeton University Press,
1957.

[6] H. Kaprykowsky, “Alignement d’un enregistrement Audio
avec sa Partition : passage de l’algorithme DTW global à un DTW
à court terme,” Master Thesis, Ircam Centre Pompidou, Paris,
France, 2005.

V ­ 252

