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ABSTRACT

This paper describes two methods for applying hidden Markov mod-

els (HMMs) to acoustic modelling of drum sound events for poly-

phonic music transcription. The proposed methods are instrument-

wise binary modelling and modelling of instrument combinations.

In the first, each target instrument is modelled with a “sound” model

and all target instruments share a “silence” model. Each instrument

is transcribed independently from the others. In the latter method,

different instrument combinations are modelled, and an additional

“silence” model is created. The proposed methods are evaluated

with simulations with acoustic data, and compared with two refer-

ence methods. Simulations show that combination modelling per-

forms better than instrument-wise modelling.

1. INTRODUCTION

Drum transcription is here defined as detection and recognition of

drum sounds in a given acoustic input signal. The input signal can

be either a signal containing only drums, or real polyphonic music,

and the output can for example be in the form of a MIDI file.

A coarse taxonomy that can be used with existing drum tran-

scription systems divides them into pattern recognition-based and

separation-based methods. The systems from the first category op-

erate by initially finding temporal locations of possible percussive

sound events, segmenting the signal at the onset locations, extracting

a set of features describing the segment, and using a classification

algorithm to recognise the segment. The final transcription can be

obtained by combining the temporal and classification information

of the segment. Systems in this category include, e.g., the systems

by Gillet and Richard [3, 4], and the work of Tanghe et al.[15].

Systems from the second category utilise source separation meth-

ods to segregate each drum instrument into own streams. After the

segregation, remaining task is locating the sound event onsets, and

if a blind separation method was used, recognising the used instru-

ment. The recognition step can be solved to some extent by using

“a dictionary” of possible sounds already in the separation process.

An example of a blind separation system is by Dittmar and Uhle [1].

Several methods, both blind and dictionary-based are presented by

FitzGerald in [2]. It has been noted that when the dictionary and

target signal match well, the transcription result can be good [8].

In addition to these clear categories, also some hybrid methods

have been developed. They adapt the model to fit the target signal

better. The adaptation can take place, e.g., by constructing signal-

specific models after initial classification [13], or by adapting the

rough initial models iteratively during the classification process [16].

The system presented in this paper cannot be directly categorised

in either of the above classes. It adopts the hidden Markov model

(HMM) widely used in the automatic speech recognition [11]. Like

in many separation-based methods, the whole input signal is anal-

ysed in short frames, but instead of applying any source separation

algorithm, a set of features is extracted from each frame, as is usu-

ally done in the pattern recognition-based approaches. These feature

vectors are then interpreted as observations from a HMM process.

The main motivation for using HMMs is that they enable modelling

the sequential dependencies of consecutive observations.

To our knowledge, HMMs have not been applied in this manner

for the drum transcription task earlier. They have been used for drum

transcription, but the states have been attributed to events and tran-

sitions between events instead of frames covering the whole signal

[3]. Hence, the earlier utilisation of HMMs resembles more musico-

logical modelling.

The target signals that we are interested in here are polyphonic

drum tracks (multiple drums playing at the same time, no other in-

struments) and polyphonic music (also other instruments are present).

In this paper, two different HMM-based drum transcription meth-

ods are proposed, evaluated, and compared to two reference meth-

ods. In the first, each drum instrument is transcribed independently

from others with two HMMs modelling the actual sound event and

signal when the instrument is not played. The second method mod-

els drum sound combinations and the situation when no drum instru-

ment is played.

2. ANALYSIS FRONT-END

In order to enable the use of HMMs, acoustic features have to be

extracted from the input signal. Here, an optional preprocessing step

is described, after which the signal is divided into short frames. From

these frames, a set of features is extracted, and the extracted features

can be transformed into a lower-dimensional and decorrelated space

to be used with the HMMs. The presented system handles only one-

channel signals.

As the sound of many drum instruments, especially the idio-

phones (e.g., cymbals), can be considered stochastic, sinusoids+-

residual modelling has been proposed as a preprocessing step, e.g.,

[4]. It assumes that most of the non-drum instruments will be mod-

elled with sinusoids and the drum instruments will remain in the

noise residual obtained by subtracting the sinusoids from the input

signal. The effect of a such preprocessing is evaluated in the simula-

tions.

2.1. Feature extraction

After the optional preprocessing, the signal is divided into short,

overlapping frames. Input signal sampling rate Fs being 44100 Hz,
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frame length of 1024 samples was used (corresponding to approxi-

mately 23 ms). Frame overlap of 50% was used. Also other values

were considered, but the used showed the best performance.

From each frame, a set of features are extracted. They include

the first 13 mel-frequency cepstral coefficients (MFCCs). MFCCs

have proved to be an efficient feature set in many audio applica-

tions, as they parametrise the rough spectral shape in a compact

way. In addition to the MFCCs, their first order temporal differ-

ences (∆MFCCs) are taken to enable simple modelling of temporal

evolution of the coefficients.

Also simpler spectral features are extracted, including spectral

centroid, spectral spread, spectral skewness, spectral kurtosis, spec-

tral slope, spectral flatness, and 85% spectral roll-off point (see [10]

for definitions). All of these simpler spectral features are calculated

using a logarithmic frequency resolution.

Finally, the RMS value of the signal in the frame is calculated, as

well as the band energy ratios of six non-overlapping octave bands

(band k has upper boundary Fk given by Fk = Fs2
−K+k−1, where

K is the total number of bands).

2.2. Feature transformations

Even though the MFCCs are decorrelated from each other due to dis-

crete cosine transformation step in their extraction procedure, sim-

ilar decorrelation can not be guaranteed over the whole feature set.

Instead, it is very likely that the chosen feature set has inter-feature

correlations. The redundant information causes unnecessary compu-

tational load, and the covariance matrix calculated over all the fea-

tures is not diagonal, which is assumed by the used HMM toolbox.

The effect of two linear, unsupervised, feature transformations

methods are evaluated. They are principal component analysis (PCA)

and independent component analysis (ICA). PCA aims to remove

second order statistical dependencies from the data, while ICA aims

to remove also higher-order dependencies. Both have been noted to

be useful in phoneme recognition with HMMs [14]. In addition to

the feature decorrelation, the transformations enable to reduce the

feature vector dimensionality.

In the simulations, when using PCA, the number of retained di-

mensions was determined by choosing the ones contributing to 90%

of the overall variance. With ICA, the used algorithm was requested

to return 20 components. A fast, fixed-point implementation of the

ICA algorithm was used [6].

3. SYSTEM ARCHITECTURES

The two alternative methods for applying HMMs in the acoustic

modelling evaluated here are the instrument-wise binary modelling

and the modelling of instrument combinations. In both methods,

the observation distributions within HMM states are modelled with

Gaussian mixture models (GMMs).

3.1. Instrument-wise modelling

In the instrument-wise modelling, each target instrument is tran-

scribed independently from the others. For the transcription, two

HMMs are used: one modelling observations during a sound event of

the target instrument, and another for modelling observations when

the instrument is not played. The “sound” HMM tries to model how

the feature values evolve during the sound event, regardless of any

other simultaneously sounding instruments. The feature values when

the instrument is not played are modelled with a 1-state HMM, i.e.,

with a GMM. Such a simple structure is assumed sufficient because

the modelled data has no distinctive temporal structure, or it is so

complex and dependent on the signal that the modelling is practi-

cally impossible. Instead of constructing separate “silence” models

for each instrument, all target instruments share a common model,

referred as a universal background model (UBM) after [12].

3.2. Combination modelling

The second proposed method models the combinations of simulta-

neously occurring drum instruments, i.e., if there are kick drum (B)

and snare drum (S) in the drum kit, then the modelled combinations

are B, S, and B+S. As with the instrument-wise modelling, a back-

ground model is constructed to model the features when none of the

combinations is active.

A drawback of modelling combinations is that their number in-

creases rapidly as a function of the possible instruments. However,

in practice a small portion of these combinations contribute the ma-

jority of all combination occurrences [9, 3]. This observation can be

used to choose a subset of combinations to be modelled.

3.3. Training the models

The expectation maximisation algorithm was used to learn the pa-

rameters of GMMs and the state transition probabilities in both HMM

architectures [11]. In simulations, it was noted that five HMM states

for modelling the sound event produced the best result, both in com-

bination and instrument-wise modelling. The number of components

in GMMs was set to three for sound event modelling, and to seven

for silence modelling. Also these values were determined with sim-

ulations.

Segmentation of the training events was done using a fixed-

length segment after each manually annotated event start. Drums

as freely-decaying instruments do not have a clearly-defined dura-

tion or offset time, so the used segment length was determined by

analysing −40 dB decay time from a large set of individual drum

sound samples. The average decay time varied from 130 ms of kick

drum to 420 ms of hi-hats. Based on these results and some exper-

iments, the maximum segment length was set to 180 ms. If another

sound event of the same type sets on earlier, the segment length is

reduced to match the interval between the events. It might be benefi-

cial to determine the segment length based on the sound event itself,

but the sound event length determination is a difficult task due to

co-occurring instruments, both other drums and melodic.

Each of the instrument-wise and combination models are trained

with features related to the occurrences of the modelled event within

the training data. E.g., with instrument-wise modelling and training

a model for the kick drum, all the occurrences of kick drum events in

the training data were used to determine the model parameters. The

background models are trained using the signal segments that are

not used to train any of the other models. This approach provided

the best result. The other alternatives for background model training

would be to use only the frames used to train all the sound models

(similar to the GMM-UBM training for speaker verification in [12]),

or to use all frames from the training data, both including drums and

non-drums. The method of using only the frames from sound events

performed worst of the three.

3.4. Using the models

Transcription with the models is straightforward: features are ex-

tracted as was done in the training phase, feature vectors are nor-

malised and possibly transformed using the parameters calculated
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in the training phase, HMM state observation likelihoods are esti-

mated from GMMs, and finally the optimal path through models is

decoded. The difference between the evaluated architectures is illus-

trated in Figure 1. The top panel illustrates the usage of instrument-

wise models, while the lower panel illustrates the combination mod-

elling.

With instrument-wise modelling, the observation likelihoods of

the UBM and the model of instrument to be transcribed are com-

bined and the token passing algorithm [17] is used. The result is a

path describing whether the instrument is playing in a certain time

frame or not. This is repeated for all instruments. After all instru-

ments have been decoded, the occurrence information is combined

to yield the final transcription. The usage of the combination models

is otherwise similar with the instrument-wise models, except instead

of decoding each instrument separately, the observation likelihoods

of all combinations are combined and only one path is sought.

The main difference is that the instrument-wise modelling lacks

the knowledge about the context created by co-occurring instruments.

As noted in [9], this may lead to the occurrence of very unlikely

combinations in the transcription. The co-occurrence information is

modelled implicitly with the combination modelling. Still, the trade-

off between the computational complexity caused by the number of

models, the co-occurrence information importance and the amount

of data required to construct the models exists.

No musicological modelling was used, even though it has been

shown to improve results [9]. This was done to keep the systems

as simple as possible and the results easier to interpret. Hence, all

transitions between models were set equiprobable.

4. EVALUATION

The performance of the proposed methods were evaluated with sim-

ulations with acoustic input data. The target instruments were lim-

ited to the set containing only kick drum, snare drum and hi-hats.

These three are able to describe the rhythmic structure of an aver-

age pop/rock piece accurately enough for many applications. The

transcription result was compared to the manually annotated ground

truth. The calculation of the evaluation metrics is presented in de-

tail in [8], allowing 30 ms deviation of transcribed events from the

ground truth.

The system performance was evaluated with three sets of acous-

tic material. The first two sets consist of signals containing only

polyphonic drum sequences, i.e., no other instruments are present.

The first data set, referred as “simple drums”, consists of relatively

simple percussive sequences played mainly with the target drums.

This set is the same as the “production grade wet mixes” in [8]. The

second test set, referred as “complex drums”, was recorded and an-

notated with the same setup as the first one, but the sequences are

more complex in nature, i.e., they contain also other drum instru-

ments and the playing has more variation. The third test set, referred

as “RWC Pop”, consists of the pieces from the RWC Popular Mu-

sic database containing also other instruments and singing [5]. The

ground truth annotations for the RWC set were generated based on

the MIDI files provided along the database. However, the MIDI files

were not synchronised accurately enough with the acoustic data, so

temporal offset and possible tempo changes were annotated by hand.

From all pieces in the data sets, the first thirty seconds of the

acoustic data was used in the evaluations. If the acoustic data was

less than thirty seconds in length (as was the case in some of the

pieces in the drums-only sets), the entire signal was used. 3-fold

cross-validation was used, and the evaluation metrics were calcu-

lated over all folds.
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Fig. 1. Difference of the proposed HMM architectures.

The evaluation metrics were calculated both to all instruments

separately and over all instruments. The used metrics were precision

rate P and recall rate R, defined as

P =
c

s
, R =

c

g
, (1)

where c is the number of correctly transcribed events, s the number

of events in the system output, and g the number of events in the

ground truth annotations. From precision and recall rate, F-measure

F was calculated with

F =
(β2 + 1)PR

β2P + R
, (2)

where β is a weighting factor (equal weighting β = 1 was used). All

the used metrics have the range of 0 . . . 1, and larger value is better.

To put the results in perspective, two other methods were taken

for comparison. The first, referred as NSF, relies on source sepa-

ration using a dictionary, and was presented originally in [8]. The

second, referred as SVM, is an example of pattern recognition on

events, described in [15]. From both comparison methods, the orig-

inal authors’ implementations were used, SVM implementation was

from [7]. With NSF method, the onset detection thresholds were

optimised automatically during simulations. With SVM method, no

training was done and only the provided models were used.

The results are presented in Table 1 containing overall F-measures

for transcribing kick drum, snare drum, and hi-hats from the three

different material sets. Detailed evaluation results for the best per-

forming HMM architecture for each evaluation material type are pre-

sented in Table 2. With all test sets the best performance was ob-

tained with combination modelling along with the following opera-

tional parameters: “simple drums” (preprocessing and PCA), “com-
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F-measure (%) simple drums complex drums RWC Pop

binary HMM 72.7 65.8 44.6

comb. HMM 86.4 79.1 47.0

SVM 82.8 75.9 53.8

NSF 95.6 71.2 0.10

Table 1. Total average F-measures for the evaluated systems and

different material sets. For HMM-based systems, the result gained

with the optimal parameter values is presented.

material metric kick drum snare drum hi-hat

simple P(%) 81.7 88.8 82.6

drums R(%) 89.5 82.5 93.4

complex P(%) 73.5 59.8 76.3

drums R(%) 92.2 86.6 89.6

RWC P(%) 38.6 24.3 44.2

Pop R(%) 73.5 54.5 62.7

Table 2. Detailed results for the best performing HMM systems for

each evaluation material set.

plex drums” (no preprocessing or feature transformations), and “RWC

Pop” (preprocessing and no feature transformations).

It can be seen that the combination modelling performed con-

siderably better than the instrument-wise modelling with both test

categories consisting only of drums. The difference was reduced

with the polyphonic music, in which case both methods performed

badly. When considering the effect of preprocessing or PCA as fea-

ture transformation, nothing conclusive can be said. Even though

small differences were observed in the performance, they were not

consistent and may not be statistically significant.

Applying ICA as a feature transformation proved to have very

little effect with the simple material. With the more complex mate-

rial, ICA decreased the overall system performance noticeably.

Based on the results, the main problem with HMM-based ap-

proaches seems to be low precision, i.e., the systems tend to tran-

scribe more events than there are present in the input signal. One

way to handle this problem could be to use also features which would

describe the accent of the signal. Other could be to integrate a musi-

cological modelling to the system.

5. CONCLUSIONS

This paper has presented application of two HMM architectures in

the acoustic modelling of drums sound events for music transcrip-

tion. The proposed methods were evaluated with simulations with

acoustic material and compared with two reference systems. The

evaluation results suggest that combination HMMs perform clearly

better than instrument-wise models. The effect of preprocessing and

feature transformation was left inconclusive. The results also sug-

gest that plain HMMs without any musicological modelling may not

be the optimal approach to the transcription problem.
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