
DRUM SOUND ANALYSIS FOR THE MANIPULATION OF RHYTHM IN DRUM LOOPS

Juan P. Bello, Emmanuel Ravelli ∗, Mark B. Sandler

Centre for Digital Music
Queen Mary University of London
Mile End Road, London E1 4NS

juan.bello-correa@elec.qmul.ac.uk

ABSTRACT
This paper addresses the issue of drum sound classification in the
context of automatic rhythm modification of drum loops. The pro-
posed method segments the signal using an onset detection algo-
rithm, characterises segmented sounds using a spectral feature set,
and classifies them using k-means clustering. We propose a simple
taxonomy for the grouping of different instrumental sounds under
a few utilitarian labels. Results demonstrate the adequacy of our
proposed taxonomy while showing that our classification approach
outperforms commonly-used supervised learning techniques.

1. INTRODUCTION

Drum loops refer to short, pre-recorded percussive riffs, which are
digitally repeated, processed and edited to create the rhythmic sec-
tion of a given track. In recent years the use of drum loops has be-
come an essential component of a number of popular musical genres
such as techno, hip hop, dub, drum and bass, etc. Their popular-
ity has created a growing industry for the sale of royalty-free loop
repositories and software for the creation of loop-based music (e.g.
Sonic Foundry’s ACID, Propellerhead’s ReCycle, FL Studio, etc).
From a high-level perspective, a drum loop can be described as a
function of two dimensions: sound, referring to its instrumenta-
tion and acoustic properties; and rhythm, referring to the musically-
meaningful organisation of the recorded sounds along time. While
there is a multiplicity of tools to modify the former, there is little
that can be done to automatically modify the rhythm of a drum loop.
A step on this direction is taken by FXPansion’s GURU [1], a re-
cently released software package which attempts to transcribe drum
loops, and then use the recognised segments as sound samples in a
MIDI-driven sequencer. Although new rhythms can be created by
rearranging sounds with this method, the naturalness of the recorded
performance is lost.
Alternatively, we propose a system for the automatic rhythmic mod-
ification of drum loops. The system is able to re-synthesise a given
drum loop, called the original signal, using the rhythm of another,
known as the model signal. It consists of three stages: an analysis
stage, where individual sounds in both signals are sliced, tagged ac-
cording to their relative position to the beat, and classified into sound
categories; a transformation stage where the resulting sequences of
sound classes are aligned; and a synthesis stage, where the result-
ing alignment is used to re-allocate events on the original signal to
the position of events in the model signal. Here, we only discuss
the first of these stages, justifying our strategy for the analysis and
classification of percussive sounds in this context.
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2. BACKGROUND AND OUR APPROACH

The issue of drum sound classification has been mostly studied in
the context of Music Information Retrieval, with most relevant work
concerned with the transcription of isolated drum sounds (e.g. the
work by Herrera et al. [2]). However, a few studies have been con-
cerned with the classification of sounds in a drum sequence. Gouyon
et al [3] presented a system for the automatic labeling of short drum
kit performances, in which instruments did not play simultaneously.
The audio signal was segmented using a tatum grid, and each seg-
ment parameterised as a vector of low-level features, such that in-
strument sounds were characterised as clusters in the feature space.
Paulus et al [4] also use a tatum grid for the segmentation of drum
tracks but for the more real-life case of simultaneously occurring
sounds. Their system uses N-gram Hidden Markov Models (HMM)
for the labeling of synthesised drum sequences. FitzGerald [5] uses
a probabilistic approach to source separation for the pre-processing
of the signals, thus separating simultaneously occurring sounds. In
his approach an onset detection algorithm is used to slice the sig-
nal into strokes. A similar slicing approach is used by Gillet et al
[6]. In their work, a number of classifiers, including HMM and Sup-
port Vector Machines (SVM), are used to recognise the instrumental
sound corresponding to each sliced stroke.
In our approach we take ideas from previous methods but combine
them in novel ways: we slice the signal according to onset positions
and estimate a tatum-grid to label sounds according to their relative
position to the beat of the loop (Section 3). We then use the stan-
dard machine learning approach to drum sound classification based
on a set of low-level features calculated after the time of the onset
(Sec. 5). However, as opposed to previous approaches that attempt
full transcription, we classify according to a simple and novel taxon-
omy which is better suited to our ultimate task of rhythmic modifi-
cation of drum loops (see Sec. 4).

3. ONSET DETECTION AND TEMPO ANALYSIS

A drum loop can be seen as a succession of events, each correspond-
ing to one or many drum instrument sounds. Thus, a logical first
analysis step is to slice the signal into temporal segments by detect-
ing the beginning of each event with an onset detection algorithm.
In our implementation we use the method described in [7]. This
approach is based on a subband decomposition scheme using a 4-
channel Conjugate Quadrature Filter (CQF), followed by the com-
putation of a complex-domain spectral difference function on each
subband. Peak picking is performed on the first derivative of the
detection function as it has been shown in [8] that it improves the
localisation of onsets, an issue that is of great importance for the
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analysis of drum loops. For more details on the implementation and
the advantages of the used algorithm refer to [7, 8].
However, in the context of the rhythmic pattern described by a drum
loop, not all events have the same relevance. Indeed, events that
occur at the beat, or tactus, play a greater role as they define the
rhythmic periodicity of the loop. Thus, if a rhythmically-meaningful
transformation is to be performed in our original loop, we need the
ability to identify beat events. To do so we use a simplified version
of the algorithm in [9] to estimate the tempo of the loop. We assume
this tempo to be constant, which is reasonable for short drum riffs.
The sequence of onsets in a drum signal has a periodicity corre-
sponding to the tempo of the loop. Consequently we can estimate the
tempo by looking for strong periodicities in its onset detection func-
tion (DF). Periodicities in the detection function can be observed as
peaks in the unbiased autocorrelation function of DF, which can be
calculated as:

rDF (l) =
1

N − l

N−1∑

n=0

DF (n)DF (n − l), l = 0, .., N − 1 (1)

However, selecting one peak from rDF results in poor resolution.
For greater accuracy, we can instead average four related lag obser-
vations from it. An efficient means to extract a number of arithmeti-
cally related events from a signal (in this case rhythmically related
lags from rDF ) is to use a matrix-based comb filter approach. How-
ever, equally weighting for all lags leads to greater variability on the
detected beat periods, allowing lags of just a single sample to be con-
sidered in the estimation. To avoid this, we can use a lag weighting
function such as the Rayleigh distribution. Using a weighted-comb
filterbank we can then estimate the tempo of the signal, compute a
grid according to the beat period and align it to the first stroke. We
therefore define beat events as those located within 30ms of the es-
timated beat positions. In this paper we do not make further use of
the knowledge about beat events. However, in an upcoming paper
discussing our overall system, we use this information to address the
relative importance of event timing and sound class in the context of
rhythm morphing.

4. DEFINING A TAXONOMY

After the signal has been sliced into temporal segments, we now
need to assign each individual slice into a sound category. This is at
the core of our approach, as it will allow us to match occurrences of
similar sounds in different loops. As mentioned before, we opt for
the standard machine-learning approach in which we classify sounds
into one of a number of pre-defined categories. However, we first
need to define a taxonomy of drum sounds which is well suited to
our application.
The common approach will be to use a taxonomy of drum instru-
ments, e.g. kick drum, snare, hi-hat, conga, etc. This is equivalent
to considering the classification task as a full audio-to-score tran-
scription of the drum loops (see [6] for an example). However, for
the processing of drum loops to be effective, such a taxonomy will
be required to include all possible drum sounds and their combina-
tions, resulting on all the known difficulties regarding the selection
of an appropriate training set for the classifier and the generalisation
to different instances of the same sound class. Moreover, this solu-
tion is far too complex and unnecessary for our application. Original
and model signals are bound to have different instrumentations, and
rather than attempting an approach that describes sounds according
to specific instruments, we need a description that can be fitted into
more general categories of drum sounds.

What we propose instead, is a simple taxonomy where drum sounds
are classified according to the distribution of their spectral energy
into three classes: low, mid and high.

Low: refers to all sounds (and combinations of sounds) with en-
ergy mostly concentrated on the low frequencies, e.g. the sound of a
bass-drum. The low occurrences form the basis of a loop and define
its groove, usually providing the “anchoring” points of the bar-long
rhythmic pattern. The distribution of low events in a bar is often sim-
ilar for loops of a given music style: on the 1st and 3rd beat of a 4/4
rock pattern, on the 2nd and 4th of a reggae pattern, every beat for
techno, etc.
Mid: refers to all combinations of sounds where the energy content
is mostly concentrated on the mid-frequency range, e.g. snare-drum,
rim-shot, claps, toms, congas, etc. The mid occurrences balance the
sequence of low events and usually bear great responsibility for the
accentuation of the rhythmic pattern. The rhythm of a loop is mostly
defined by the interaction between low and mid occurrences.
High: refers to all cymbal-like sounds with energy content mostly
concentrated in the high frequencies, e.g. hi-hat, ride cymbal, etc.
The high occurrences are usually used for variations, ornamentations
and simple rhythmic reference. These occurrences are usually less
critical when characterising the rhythmic pattern in the loop.

This taxonomy encompasses, not only a textural, but also a func-
tional categorisation of the sounds in a drum loop. This is related
to the instrumentation of “playing styles” [10], or characteristic sub-
groups of events in a drum pattern that are common to many a musi-
cal genre (e.g. snare or hand-clap for events on the second and fourth
quarter notes of a 4/4 pattern, hi-hat or cymbal for notes occurring
on the first and third notes of triplets in a swing pattern). We expect
such a simple taxonomy to facilitate the classification task, while al-
lowing generalisation to a large number of percussive sounds, both
acoustic and electronically generated. In the following sections we
will demonstrate that this is indeed the case.
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Fig. 1. The waveform of an example drum loop showing: detected
and numbered onsets (top), and corresponding feature sets (bottom)

5. FEATURE SET AND CLASSIFIER

We propose a feature set that roughly characterises sounds according
to their spectral magnitude shape, using the front-end implemented
as part of the onset detection process. Our analysis is based on the
first 8 FFT channels of the lowest subband of the CQF filterbank,
corresponding to a frequency range between 0 and 350 Hz. We then
construct an 8-dimensional feature vector for each sound, by taking
the mean of the magnitude of these FFT channels over 100 ms after
the onset (8 analysis frames). This feature set is well suited for the
characterisation of our chosen categories. As can be seen in Fig.1,
low occurrences (e.g. onsets 1, 5, 6 and 7) have a peaked spectrum
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Fig. 2. (left) Clustering on four example loops: (1) an electronic-drum loop, containing bass drum (bd), hi-hat (hh) and conga (co); (2) an
acoustic rock-style loop containing bass drum, snare (s), hi-hat and toms (to); (3) a hip-hop loop, containing bass drum, hi-hat and rim shot
(rs); and (4) a drum loop synthesised using bass drum, clap (cl) and hi-hat. The centroid (�) and cluster boundaries are shown.

Fig. 3. (right) The spectral contents of each low, mid and high centroid for all examples in Figure 2.

concentrated on the first few channels of the FFT; mid occurrences
(e.g. onsets 3, 8 and 12) have their energy spread mostly across the
upper channels, while high occurrences (e.g. onsets 2, 4, 11 and 13)
have very low energy, as most of their energy content is concentrated
on the neglected subbands of the filterbank.
As the occurrences of each class are well separated in the feature
sub-space, we can use a clustering technique for classification. Us-
ing a clustering technique eliminates the need for a target variable, or
“model”, necessary for supervised learning. Therefore we avoid the
time-consuming creation of a large annotated training set containing
a wide range of percussive sounds and their combinations. Using
an unsupervised technique we create a new model for each analysed
loop.
In this work we use the k-means algorithm, which divides the feature
space in k clusters using an iterative calculation of each clusters’
centroid (in our case k = 3). For best results, the k-means algorithm
is run several times with different random initialisations; the best
clustering is defined as the one with the smallest sum of point-to-
centroid distances. Clusters are automatically labeled by looking at
the frequency contents of each centroid.
Figure 2 shows a 2-dimensional projection of our 8-dimensional fea-
ture sub-space for four example loops: (1) an electronic-drum loop;
(2) an acoustic rock-style loop; (3) a highly processed hip-hop loop;
and (4) a drum loop synthesised using electronic drums (see instru-
mentation details on the figure’s caption). The plots show the esti-
mated centroid of each cluster (depicted as �) and the boundaries
between clusters. For all examples Figure 3 depicts the spectral con-
tents of each centroid. These examples show that our approach is
able to successfully classify sounds according to our proposed tax-
onomy. It can be seen how different instruments (congas, toms,
snare drum, rim shot and claps) are successfully clustered as mid
occurrences in all experiments. This suggests that our taxonomy at-
tains the level of abstraction needed for the rhythmic modification
of loops, as we are able to map sounds with different textures to the
same “functional” category. Furthermore, if we were to superimpose
the plots in Figure 2, we will see that any classifier using an univer-

sal model will struggle to identify some of the mid occurrences as
belonging to the same group, therefore supporting our choice of an
unsupervised learning technique. The following section will be de-
voted to evaluate performance for a large database of drum loops.

6. EXPERIMENTAL RESULTS

In this study we use most of the database (95%) used in [6], i.e.
those loops containing at least 3 instrumental classes, as our clus-
tering algorithm cannot deal with less classes. This subset contains
300 recorded loops comprising 5400 individual strokes. The record-
ings are in wave format, extracted from commercial sample CDs at
a sampling rate of 44.1kHz. The manual annotations on the database
were mapped from their original 28 classes (eight instrument and all
their possible combinations) to our simple taxonomy as follows: low
contains sounds where the bass drum is predominant; mid groups
sounds where the snare drum, clap, rim shot, tom and percussive
sounds such as congas and tabla, are predominant; and high groups
sounds where hi-hat and cymbals are played in isolation. By pre-
dominant we mean the sound that carries the highest share of the
signal’s energy. The database contains a multiplicity of styles in-
cluding funk, jazz, rock and techno, using different drum kits, both
acoustic and electronic, and in some cases processed by effects such
as compression, distortion, flanger and reverberation. The length of
loops varies considerably.
For our experiments we perform an empirical comparison of a few
learning algorithms. Other than the proposed k-means algorithm,
we use a couple of supervised learning techniques: a non-parametric
learner (1-nearest neighbour or 1-NN) and a learner based on dis-
criminant functions (a Support Vector Machine or SVM). All clas-
sifiers were implemented in Matlab. We also compare our proposed
feature set to the one used in [6], composed of the mean of 13 Mel
Frequency Cepstral Coefficients (MFCC), 4 spectral shape parame-
ters and 6 band-wise frequency content parameters.
The accuracy of the supervised classification was estimated using
a standard 10-fold cross-validation procedure: for each experiment,
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the training set is randomly divided into 10 subsets or folds, such that
we sequentially evaluate on each fold using a classifier trained on the
remaining 9 folds. The cross-validation accuracy is the mean of the
10 recognition rates. For the evaluation of the unsupervised learner
we operate on the whole database, with accuracy simply defined as
the ratio between the number of good detections and the total number
of strokes in the database.

FEATURE SET FROM [6] OUR FEATURES

1-NN 86.48 87.21
SVM 90.84 90.15

K-MEANS 26.20 92.39

Table 1. Classification accuracy for different machine learning al-
gorithms and feature sets.

SVM K-MEANS

ELECTRO 82.37 85.56
HIP-HOP 92.72 90.86

ACOUSTIC HEAVY 89.53 95.83
ACOUSTIC LIGHT 89.74 95.23

Table 2. Classification accuracy for different drum-kit types

Table 1 supports our use of unsupervised learning and selection of
feature set by showing that the best overall classification accuracy
(92.39%) is obtained with our proposed implementation. This is
convenient for our application as the 1-NN approach, which per-
forms the worst, needs far more memory and computational power
than any of the other approaches, while both the SVM and the 1-NN
need a large annotated training set. Noticeably, results using our fea-
ture set are consistently high for all classifiers, showing its ability to
characterise sounds according to the given taxonomy.
The performance difference between the SVM using the feature set
in [6] and our implementation is less than 2%. This suggests that
given a large and wide enough training set (like the database we use),
this tested-and-tried supervised approach can perform similarly to
our method. However, the main strength of our approach is that, by
not relying on a training set, it has the ability to generalise to textures
that the system has not seen before.
Table 2 shows a comparison of our two best classifiers using dif-
ferent “drum-kit textures”. In [6] the data set was split according
to the drum-kit type on each loop. Four categories were defined:
electro, containing sounds from electronic drum kits; hip-hop with
highly processed sounds; heavy, containing sounds with heavy and
long reverberation; and light, using common acoustic sounds. We
then perform a 4-fold experiment, where each sub-set of the data
corresponds to a fold, such that the supervised algorithm is sequen-
tially tested on all folds and trained on the remaining three. Apart
from the case of hip-hop drum-kits, results consistently show how
our system generalises better than the SVM for unknown drum-kits,
further supporting our case for the creation of a new model for each
loop. Results in the table also hint at the complexity of correctly
labeling electronic or highly processed sounds.

7. CONCLUSIONS

An approach is proposed for the classification of percussive sounds
in drum signals. It is part of a larger system for the automatic rhyth-

mic modification of drum loops, to be presented in an upcoming
publication. Hence the classification is not aimed at full transcrip-
tion, as in previous approaches, but to a description of the contents
which allows the matching of events in different signals according
to their “role” in the drum sequence. It starts by slicing the signal
into segments using and onset detection algorithm and calculating
a tatum grid to characterise events according to their relative posi-
tion to the beat. We then classify the sounds on those segments into
three simple categories - low, mid and high - which are related to
the spectral contents of each sound. We use a set of spectral features
and a k-means clustering algorithm for the classification. Our results
show that our taxonomy is well suited to map different instruments
in different loops to the same functional categories, for example, the
sound of snare drums, claps, congas and toms are all clustered as mid
occurrences; while both electronic and acoustic bass drums are con-
sidered as low occurrences. Furthermore, experiments on a large an-
notated database of drum loops show that our approach outperforms
the use of supervised learning techniques and a more standard fea-
ture set, while being able to generalise better to “unfamiliar” sounds.
On-going experiments on our complete system for automatic rhyth-
mic modification support the observations and claims made on this
paper.
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