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ABSTRACT

This paper describes a new technique for recognizing musical
instruments in polyphonic music. Because the conventional frame-
work for musical instrument recognition in polyphonic music had
to estimate the onset time and fundamental frequency (F0) of each
note, instrument recognition strictly suffered from errors of onset
detection and F0 estimation. Unlike such a note-based process-
ing framework, our technique calculates the temporal trajectory of
instrument existence probabilities for every possible F0, and the
results are visualized with a spectrogram-like graphical represen-
tation called instrogram. The instrument existence probability is
defined as the product of a nonspecific instrument existence prob-
ability calculated using PreFEst and a conditional instrument exis-
tence probability calculated using the hidden Markov model. Ex-
perimental results show that the obtained instrograms reflect the
actual instrumentations and facilitate instrument recognition.

1. INTRODUCTION

Musical instrument recognition is an important task for many ap-
plications including automatic music transcription, music informa-
tion retrieval and computational auditory scene analysis. In partic-
ular, recent worldwide popularization of online music distribution
services and portable digital music players makes musical instru-
ment recognition more important. This is because musical pieces,
especially classical music, are characterized by what instruments
are used. In fact, the names of some music genres are based on in-
strument names, such as “piano sonata” and “string quartet.” Mu-
sical instrument recognition can therefore be used when one wants
to search for certain types of musical pieces, such as piano sonata
or string quartet.

Whereas musical instrument recognition studies mainly dealt
with solo musical sounds in 1990s (e.g., [1]), the number of those
dealing with polyphonic music has been increasing in recent years.
Kashino et al. [2] developed a computational music scene analysis
architecture called OPTIMA, which recognizes musical notes and
the instruments based on the Bayesian probability network. They
subsequently proposed a method that identifies the instrument
playing each musical note based on template matching with tem-
plate adaptation [3]. Kinoshita et al. [4] improved the robustness
of OPTIMA to the overlapping of frequency components, which
occurs when multiple instruments play simultaneously, based on
feature adaptation. Eggink et al. [5] tackled this overlapping prob-
lem with the missing feature theory. They subsequently dealt with
the problem of identifying only the instrument playing the main
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(the most predominant) melody on the assumption that the main
melody’s partials suffer less from other sounds occurring simulta-
neously [6]. Vincent et al. [7] proposed a new musical instrument
identification method based on independent subspace analysis. Ki-
tahara et al. [8] proposed techniques for feature weighting based on
the robustness to the above-mentioned overlapping problem and
for avoiding musically unnatural errors using musical context.

The common feature in the above-mentioned studies except
for [7] is that instrument identification is performed for each frame
or each note. In the former case [5, 6], it is difficult to obtain a rea-
sonable accuracy because temporal variations of spectra are im-
portant characteristics of musical instrument sounds. In the latter
case [2, 3, 4, 8], the identification system has to first estimate the
onset time and fundamental frequency (F0) of musical notes and
then extracts the harmonic structure of each note based on the es-
timated onset time and F0. Therefore, instrument identification
suffers from errors of onset detection and F0 estimation. In the ex-
periments reported in [3] and [8], in fact, correct data of the onset
times and F0s were manually fed.

In this paper, we propose a new technique that recognizes mu-
sical instruments in polyphonic musical audio signals without re-
lying on onset detection nor F0 estimation. The key idea of our
technique is to visualize the probability that the sound of each of
target instruments exists at each time and each frequency. The re-
sult of this analysis is a set of images, called instrogram, that are
similar to a spectrogram except in that each point represents not
the energy of the signal but the instrument existence probability.
This probability is defined as the product of two kinds of probabil-
ities, called nonspecific instrument existence probability and con-
ditional instrument existence probability, and these are calculated
using PreFEst [9] and the hidden Markov model (HMM), respec-
tively. The advantage of our technique is that errors of calculating
one probability do not influence the calculation of the other be-
cause the two probabilities can be calculated independently.

2. INSTROGRAM

The instrogram is a spectrogram-like graphical representation of
a musical audio signal, which is useful for finding which instru-
ments are used in the signal. There exists one image for each tar-
get instrument, and each image, where the horizontal and vertical
axes represent time and frequency respectively, shows the proba-
bility that the target instrument is used. An example is presented
in Fig. 1. This example is the result of analyzing an audio signal
of “Auld Lang Syne” with respect to piano, violin, clarinet, and
flute. This signal, played on piano, violin, and flute, was prepared
with the procedure described later, in Section 4. If the instrogram
is too detailed for some purposes, it can be simplified by divid-
ing the whole frequency region into some subregions and merging
results within each subregion. The simplified version of Fig. 1 is
given in Fig. 2. From the four images of the instrogram or from

V  229142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



N
ot

e 
N

um
be

r

Piano

0 5 10 15 20 25 30

50

60

70

80

N
ot

e 
N

um
be

r

Violin

0 5 10 15 20 25 30

50

60

70

80

N
ot

e 
N

um
be

r

Clarinet

0 5 10 15 20 25 30

50

60

70

80

Time [sec]

N
ot

e 
N

um
be

r

Flute

0 5 10 15 20 25 30

50

60

70

80

Fig. 1. An example of instrograms. This is the result of analyzing
trio music, “Auld Lang Syne,” played on piano, violin, and flute.
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Fig. 2. The simplified (summarized) instrogram of Fig. 1.

the simplified instrogram, we can see that the melodies in the high
(approx. note numbers 70–80), middle (60–75), and low (45–60)
pitch regions are played on flute, violin, and piano.

3. ALGORITHM FOR CALCULATING INSTROGRAM

Each image of the instrogram is a plane with horizontal and ver-
tical axes representing time and frequency. The intensity of the
color of each point (t, f) in the image represents the probability
p(ωi; t, f) that a sound of the target instrument ωi exists at time t
and frequency f . We call this instrument existence probability. It
can be calculated as the product of two probabilities:

p(ωi; t, f) = p(exist; t, f) p(ωi|exist; t, f),

where p(exist; t, f) called nonspecific instrument existence proba-
bility is the probability that a sound of a certain instrument exists at
time t and frequency f , while p(ωi|exist; t, f) called conditional
instrument existence probability is the conditional probability that,
if a sound of a certain instrument exists at time t and frequency f ,
the instrument is ωi.

The nonspecific instrument existence probability is calculated
using PreFEst [9]. PreFEst models, at each frame, an observed
spectrum of the input signal containing multiple musical instru-
ment sounds as a weighted mixture of harmonic-structure tone
models with every possible F0. The weight of each tone model
represents how relatively predominant its tone model is. We define

p(exist; t, f) as this weight because this weight can be interpreted
as the probability that there exists a certain sound at its F0.

The conditional instrument existence probability, on the other
hand, is calculated by using HMMs because temporal character-
istics of an instrument sound are important in recognizing its in-
strument. In each possible frequency f , the temporal trajectory
H(t, f) of the harmonic structure with F0 of f can be considered
to be generated from a Markov chain of m + 1 models of possible
instruments ω1, · · · , ωm and silence. Each model is an HMM that
consists of multiple states. Then, p(ωi|exist; t, f) can be calcu-
lated from the likelihoods of paths in the chain.

The instrument existence probability p(ωi; t, f) can be esti-
mated robustly because the two constituent probabilities corre-
sponding to the note estimation and instrument identification are
calculated independently and then integrated by multiplying them.
In most previous studies, the onset time and F0 of each note were
first estimated and then the instrument of the note was identified
by analyzing spectral components extracted based on the result of
the note estimation. The upper limit of the instrument identifica-
tion performance was therefore bound by the precedent note esti-
mation, which is generally difficult and not robust for polyphonic
music. Unlike such note-based symbolic approach, our technique
is based on a non-symbolic and non-sequential approach that is
more robust for polyphonic music.

3.1. Nonspecific Instrument Existence Probability
By using the PreFEst, the nonspecific instrument existence proba-
bility p(exist; t, f) is estimated on the basis of the maximum like-
lihood estimation without assuming the number of sound sources
in a mixture. The PreFEst, which was originally developed for es-
timating F0s of melody and bass lines, consists of three processes:
PreFEst-front-end for frequency analysis, PreFEst-core for esti-
mating the relative dominance of every possible F0, and PreFEst-
back-end for evaluating the temporal continuity of the F0. Because
the problem to be solved here is not to estimate the predominant
F0s as melody and bass lines but to calculate p(exist; t, f) of every
possible F0 f , we only use the PreFEst-core.

The PreFEst-core models an observed power spectrum as a
weighted mixture of tone models p(x|F ) of every possible F0 F .
The tone model p(x|F ), where x is the log frequency, represents a
typical spectrum of the harmonic structure, and the mixture density
p(x; θ(t)) is defined as

p(x; θ(t)) =

∫ Fh

Fl

w(t)(F )p(x|F )dF,

θ(t) = {w(t)(F )|Fl ≤ F ≤ Fh},
where Fl and Fh denote the lower and upper limits of the possi-
ble F0 range and w(t)(F ) is the weight of a tone model p(x|F )

that satisfies
∫ Fh

Fl
w(t)(F )dF = 1. If we can estimate the model

parameter θ(t) such that the observed spectrum is likely to have
been generated from p(x; θ(t)), the spectrum can be considered to
be decomposed into harmonic-structure tone models and w(t)(F )
can be interpreted as the relative predominance of the tone model
with F0 of F at time t. We therefore define the nonspecific instru-
ment existence probability p(exist; t, f) to be equal to w(t)(f).
The weights can be estimated using the Expectation-Maximization
(EM) algorithm as described in [9].

3.2. Conditional Instrument Existence Probability
The conditional instrument existence probability p(ωi|exist; t, f)
is calculated through the following steps.

3.2.1. Short-time Fourier transform
The spectrogram of the given audio signal is calculated with the
short-time Fourier transform (STFT) shifted by 10ms (441 points
at 44.1 kHz sampling) with an 8192-point Hamming window.
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Table 1. Overview of 28 features

Spectral features

1 Spectral centroid

2 Relative power of fundamental component

3 –10 Relative cumulative power from fundamental to i-th
components (i = 2, 3, · · · , 9)

11 Relative power in odd and even components

12–20 Number of components whose duration is p% longer
than the longest duration (p = 10, 20, · · · , 90)

Temporal features

21 Gradient of straight line approximating power
envelope

22–24 The temporal mean of differentials of power enve-
lope from t to t + iT/3 (i = 1, · · · , 3)

Modulation features

25, 26 Amplitude and Frequency of AM

27, 28 Amplitude and Frequency of FM

3.2.2. Harmonic structure extraction
In each possible frequency f , the temporal trajectory H(t, f) of
the harmonic structure (10 harmonics) whose F0 is f is extracted.

3.2.3. Feature extraction
Designing effective features is an important issue in musical in-
strument recognition. In the field of speech recognition studies,
mel-frequency cepstrum coefficents (MFCCs) and Delta MFCCs
are commonly used. Although these features may be considered
possible to be applied to musical instrument recognition, we de-
signed features optimized for musical instrument sounds because
musical instrument sounds have more complicated temporal vari-
ations (e.g., amplitude and frequency modulations). We adopt 28
features listed in Table 1, which are partly modified from those
we previously proposed [8]. For every time t (every 10 ms in the
implementation), we first excerpt a T -length bit of the harmonic-
structure trajectory Ht(τ, f) (t ≤ τ < t + T ) from the whole
trajectory H(t, f) and then extract a feature vector x(t, f) con-
sisting of 28 features from Ht(τ, f). T is 50ms in the current
implementation.

3.2.4. Probability calculation
We train HMMs, each consisting of 15 states, for target instru-
ments ω1, · · · , ωm and silence, and then consider the time series
x(t, f) of feature vectors to be generated from a Markov chain of
those m + 1 HMMs. The problem to be solved here is thus to
calculate, for each HMM Mi (i = 1, · · · , m, silence), the proba-
bility p(x(t, f)|Mi; t) that the feature vector x(t, f) is generated
from Mi at time t. Because the Markov chain assumes that the
model at time t only depends on that at the previous time t − 1,
this probability can be calculated by

p(x(t, f)|Mi; t) =
∑

j

p(x(t, f)|Mi)p(Mi|Mj),

where p(x(t, f)|Mi) is the probability that the model Mi gener-
ates the feature vector x(t, f) at any time and p(Mi|Mj) is the
transition probability from Mj to Mi. Here p(x(t, f)|Mi) is cal-
culated by the trained HMM Mi. The conditional instrument ex-
istence probability p(ωi|exist; t, f) can thus defined to be equal to
p(x(t, f)|Mi; t).

3.3. Simplifying Instrograms
The instrogram calculates instrument existence probabilities for
every possible frequency, but some applications do not need such

detailed results. If the instrogram is used for retrieving musical
pieces including a certain instrument’s sounds, for example, in-
strument existence probabilities for rough frequency regions (e.g.,
high, middle and low) are sufficient. We therefore divide the whole
frequency region into N subregions I1, · · · , IN and calculate the
instrument existence probability p(ωi; t, Ik) for k-th frequency re-
gion Ik. p(ωi; t, Ik) is defined as p(ωi; t,

⋃
f∈Ik

f), which can be
obtained by iteratively calculating the following equation because
the frequency axis is practically discrete.

p(ωi; t, f1 ∪ · · · ∪ fi ∪ fi+1)

= p(ωi; t, f1 ∪ · · · ∪ fi) + p(ωi; t, fi+1)

−p(ωi; t, f1 ∪ · · · ∪ fi) p(ωi; t, fi+1),

where Ik = {f1, · · · , fi, fi+1, · · · , fnk}.
3.4. Application to Musical Instrument Identification
The simplest way for applying instrograms to musical instrument
identification is to obtain the instrument maximizing p(ωi; t, f)
for each time t and frequency f . However, the results obtained in
this way include some errors because it does not take the tempo-
ral continuity into consideration. Here, we consider the time se-
ries of the instruments maximizing p(ωi; t, f) for each frequency
to be outputs of a Markov chain whose states are the instruments
ω1, · · · , ωm and silence. In the Markov chain, the transition prob-
abilities from a state to the same state, from a non-silence state to
the silence state, and from the silence state to a non-silence state
are more than zero and the other probabilities are zero. Once the
most likely path in the chain is obtained, the times when the instru-
ment ωi begins and stops playing can be estimated from the times
of transitions from the silence state to the ωi state and vice versa,
respectively.

4. EXPERIMENTS
We conducted experiments on obtaining instrograms from audio
signals. We used trio music of “Auld Lang Syne” that Kashino
et al. used [2]. Audio data of Auld Lang Syne were generated
by mixing audio data of RWC-MDB-I-2001 [10] on a computer
according to a standard MIDI file that we input using a MIDI se-
quencer based on Kashino’s score. Target instruments were piano
(PF), violin (VN), clarinet (CL), and flute (FL). The time resolu-
tion was 10ms from the beginning to the end of the musical piece,
and the resolution was every 20 cent from A2 to A5. The width of
each frequency region Ik was 600 cent. We used Fujihara’s imple-
mentation [11] for PreFEst and HTK 3.0 for HMMs.

The results of generating instrograms for four different instru-
mentations are shown in Fig. 3. Note that Fig. 3 shows only sim-
plified instrograms due to limited space. Comparing (a) and (b),
we can see that (a) has high existence probabilities for the flute in
high frequency regions while (b) has very low (almost zero) prob-
abilities. In addtion, (c) has the highest existence probabilities for
the violin and the secondarily highest existence probabilities for
the piano, whereas it has lower probabilities for the other instru-
ments. Similarly, (d) has high existence probabilities for the piano,
whereas it has lower probabilities for the other instruments.

Next, we conducted experiments on musical instrument recog-
nition using the obtained instrograms based on the method in Sec-
tion 3.4. The accuracy of the recognition is evaluated with

(Recognition rate) =
(Num of correctly recognized frames)

(Num of the whole frames)
.

The results are listed in Table 2. From the table, we can see that
the instrogram was useful for musical instrument recognition.

5. CONCLUSIONS

We have described a new instrogram representation obtained by a
new musical instrument recognition technique that does not rely
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Fig. 3. Instrograms of “Auld Lang Syne” with four different instrument combinations. “FL–CL–PF” means that the treble, middle, and
bass parts are played on flute, clarinet, and piano, respectively.

Table 2. Recognition rate for each instrument combination.

PF–PF–PF 97.1%
PF–VN–PF 84.7%
PF–CL–PF 86.9%
VN–PF–PF 81.1%
VN–VN–PF 86.7%

VN–CL–PF 73.2%
FL–PF–PF 82.8%
FL–VN–PF 78.5%
FL–CL–PF 78.7%

on both onset detection and F0 estimation. Whereas most previous
studies first estimated the onset time and F0 of each note and then
identified the instrument of each note, our technique calculates the
instrument existence probability for each target instrument in each
point of the time-frequency plane. This non-symbolic approach
made it possible to avoid bad influences caused by errors of the
onset detection and F0 estimation. In addition, by introducing a
Markov chain whose states correspond to target instruments and
silence for every possible F0, we achieved the identification of
musical instruments (i.e., to symbolize the instrogram analysis)
for polyphonic music.

Although we have applied instrograms to musical instru-
ment identification in this paper, the instrograms have a wider
range of potentials. If the similarity between the instrograms of
two musical pieces can be calculated, for example, it will make
instrumentation-similarity-based music information retrieval pos-
sible. Future work will include the development of such useful
applications of instrograms as well as the improvement of the ac-
curacy of calculating the instrument existence probabilities.

Acknowledgments: We thank everyone who has contributed to
building and distributing the RWC Music Database (RWC-MDB-
I-2001) [10]. We also thank Mr. Hiromasa Fujihara for giving us
permission to use his program.

6. REFERENCES
[1] K. D. Martin, “Sound-Source Recognition: A Theory and

Computational Model,” PhD Thesis, MIT, 1999.

[2] K. Kashino et al., “Application of the Bayesian Probabil-
ity Network to Music Scene Analysis,” Computational Audi-
tory Scene Analysis, D. F. Rosenthal and H. G. Okuno (eds.),
Lawrence Erlbaum Associates, pp.115–137, 1998.

[3] K. Kashino and H. Murase, “A Sound Source Identification
System for Ensemble Music based on Template Adaptation
and Music Stream Extraction,” Speech Communication, 27,
pp.337–349, 1999.

[4] T. Kinoshita et al., “Musical Sound Source Identification
based on Frequency Component Adaptation,” Proc. IJCAI
CASA Workshop, pp.18–24, 1999.

[5] J. Eggink and G. J. Brown, “A Missing Feature Approach
to Instrument Identification in Polyphonic Music,” Proc.
ICASSP, V, pp.553–556, 2003.

[6] J. Eggink and G. J. Brown, “Instrument Recognition in
Accompanied Sonatas and Concertos,” Proc. ICASSP, IV,
pp.217–220, 2004.

[7] E. Vincent and X. Rodet, “Instrument Identification in Solo
and Ensemble Music using Independent Subspace Analysis,”
Proc. ISMIR, pp.576–581, 2004.

[8] T. Kitahara et al., “Instrument Identification in Polyphonic
Music: Feature Weighting with Mixed Sounds, Pitch-
dependent Timbre Modeling, and Use of Musical Context,”
Proc. ISMIR, pp.558–563, 2005.

[9] M. Goto, “A Real-time Music-scene-description system:
Predominant-F0 Estimation for Detecting Melody and Bass
Lines in Real-world Audio Signals,” Speech Communication,
43, pp.311–329, 2004.

[10] M. Goto et al., “RWC Music Database: Music Genre
Database and Musical Instrument Sound Database,” Proc. IS-
MIR, pp.229–230, 2003.

[11] H. Fujihara et al., “Singer Identification based on Accompa-
niment Sound Reduction and Reliable Frame Selection,” Proc.
ISMIR, pp.329–336, 2005.

V  232


