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ABSTRACT
We consider the problem of reliable distribution of audio over packet-

switched networks. We make use of multiple-description coding
combined with transform coding in order to obtain robustness to-

wards packet losses. Previous approaches to this problem were re-

stricted to the case of only two descriptions. In this work we use n-

channel multiple-description lattice vector quantizers (MD-LVQs),
which allow for the possibility of using more than two descriptions.

For a given packet-loss probability we find the number of descrip-

tions and the bit allocation between transform coefficients which

minimizes a perceptual distortion measure subject to an entropy con-
straint. The optimal quantizers are presented in closed form, thus

avoiding any iterative quantizer design procedures. The theoretical

results are verified with numerical computer simulations using audio

signals and it is shown that in environments with excessive packet
losses it is advantageous to use more than two descriptions. We veri-

fy in subjective listening tests that using more than two descriptions

lead to signals of perceptually higher quality.

1. INTRODUCTION
Services such as Voice over IP, audio streaming and video conferen-

cing usually ask for high bandwidth, low delay and low packet-loss
rates in order to deliver tolerable quality for the end users. However,

the heterogeneous communication infrastructure of today’s packet-

switched networks do not provide a guaranteed performance in terms

of e.g. bandwidth or delay and therefore the desired quality of ser-
vice may not be achieved.

In this work we propose to mitigate the effect that unreliable

channels have on the quality of audio streaming by use of multiple-

description coding (MDC) [1]. The idea behind MDC is to create
separate descriptions individually capable of reproducing a source

to a specified accuracy and when combined being able to refine each

other. Hence, in order to combat the effect of excessive audio packet

losses we choose to transmit multiple audio packets simultaneously.
Traditionally, MDC schemes employ only two descriptions [2–

5]. However, MDC schemes capable of exploiting more than two

descriptions have recently been proposed [6–9]. The schemes pre-

sented in [6–8] consider the symmetric case where the side distor-
tions and the side rates are all equal. In the asymmetric case [9] the

side distortions and side rates are allowed to be unequal. In this work

we will use the MDC schemes presented in [7,8] and as such we will

focus on the symmetric case but our results can easily be extended
to the asymmetric case by replacing the underlying MDC schemes

by the ones proposed in [9].
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State-of-the-art audio coding schemes perform time-frequency
analysis of the source signal which makes it possible to exploit per-

ceptual models in both the time and the frequency domain in or-

der to discard perceptual irrelevant information. This is done in

e.g. MP3 [10], MPEG-2 advanced audio coding (AAC) [11] and
Lucent PAC [12]. The time-frequency analysis is often done by a

transform coder which is applied to blocks of the input signal. A

common approach is to use the modified discrete cosine transform

(MDCT) [13] as was done in e.g. MPEG-2 AAC and Lucent PAC.

In this paper we propose to combine the MDCT with an n-channel
MDC scheme based on multiple-description lattice vector quantizers

(MD-LVQs) [7,8] in order to obtain a perceptual transform coder for

audio which is robust to packet losses.

Multiple-description coding of audio has to the best of the au-
thors knowledge so far only considered two descriptions [4, 5]. In

this work we propose a scheme that is able to use an arbitrary num-

ber of descriptions without violating an allowable target entropy. We

show how to distribute the bit budget among the MDCT coefficients
and present closed-form expressions for the MD-LVQs which mini-

mize a perceptual distortion measure given the packet-loss charac-

teristics of the transmission channel.

2. TRANSFORM CODING FRAMEWORK
The MDCT is a so-called 50% overlapped block transform, i.e. a

transform where samples from consecutive 50% overlapping seg-
ments are windowed and transformed. Let s denote a segment of

length 2M of the input signal. The set of M transform coefficients

x is then obtained by applying the direct MDCT, which is defined

as [13]

xk =
1√
2M

2M−1X
n=0

hnsn cos

„
(2n + M + 1)(2k + 1)π

4M

«

where k = 0, . . . , M−1 and xk ∈ R and h ∈ R
2M is an appropriate

analysis window.

On each segment s a psycho-acoustic analysis is performed which

leads to a masking curve that describes thresholds in the frequency

domain below which distortions are inaudible. In our work we de-
rive a set of perceptual weighting coefficients µ from the psycho-

acoustic model presented in [14]. More specifically, we define µ as

the inverse of the masking curve given in [14] evaluated at the cen-

ter frequencies of the MDCT basis functions. With this we define a
perceptual distortion measure in the MDCT domain between x and

a quantized version x̂ of x to be the single-letter distortion measure

given by

dπ(x, x̂) �

M−1X
k=0

µk|xk − x̂k|2. (1)

We can rewrite (1) as (y − ŷ)T (y − ŷ), where yk = xk
√

µk, k =
0, . . . , M − 1. This representation has the advantage that the yk’s
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are all approximately equally sensitive to distortion after being “flat-

tened” by the masking curve, c.f. [15]. In addition it is easy to show

that the distortion measure on y and ŷ approximates an �2 distor-
tion measure for which it is known that lattice vector quantizers are

among the set of optimal quantizers [16].

3. MULTIPLE-DESCRIPTION LATTICE VECTOR
QUANTIZATION

3.1. Introduction to MD-LVQ

Let Y ∈ R
M be a random vector representing normalized MDCT

coefficients and let y be a realization of Y . An MD-LVQ consists

of one central lattice Λc ⊂ R
L, where L is the lattice dimension1

and K sublattices Λi ⊆ Λc, i = 0, . . . , K − 1. The central lat-
tice is also called the central quantizer and the sublattices are usu-

ally referred to as side quantizers. With MD-LVQs a source vec-

tor y is first quantized to the nearest reconstruction vector λc in the

central lattice Λc. Hereafter follows index assignments (mappings),

which uniquely map all λc’s to reconstruction points in each of the
sublattices Λi. This mapping is done through a labeling function

α(λc) = (λ0, λ1, . . . , λK−1).

At the receiving side y is reconstructed to a quality that is deter-

mined by the number of received descriptions. If no descriptions are
received we reconstruct using the expected value, E[Y ], and if all

K descriptions are received we reconstruct using the inverse map

α−1, hence obtaining the quality of the central quantizer. In all

other cases, we reconstruct to the average of the received descrip-
tions. There are in general several ways of receiving κ out of K
descriptions. Let L denote an index set consisting of all possible κ
combinations out of {0, . . . , K − 1}. We denote an element of L by

l = {l0, . . . , lκ−1} ∈ L. Upon reception of any κ < K descriptions
we reconstruct to ŷ using ŷ = 1

κ

P
i∈l λi.

3.2. Rate and distortion results of MD-LVQ

The results of this subsection are presented in detail in [7, 8]. The

entropy Rc of the central quantizer is given by

Rc ≈ h(Y ) − 1

L
log2(ν),

where h(Y ) is the componentwise differential entropy of Y and ν is
the volume of a fundamental region of Λc. The entropies of the side

quantizers are given by

Ri = Rc − 1

L
log2(Ni),

where Ni = [Λi : Λc] is the index value of the sublattice Λi. Since

we consider the symmetric case we have Ni = N and Ri = R for

all i.
We will use a simple network model where the packet-loss prob-

abilities are equal for all packets and in addition we assume the

packet-loss probabilities to be independent. With this we can write

the expected distortion based on the packet-loss probability p as

d = K̂1G(Λc)2
2(h(Y )−Rc)

+ K̂2ψ
2
LG(SL)22(h(Y )−Rc)2

2K

K−1
(Rc−R) + pK 1

L
E[‖Y ‖2],

(2)

where K̂1 = 1 − pK and K̂2 is given by

K̂2 =

KX
κ=1

 
K

κ

!
pK−κ(1 − p)κ K − κ

2κK
. (3)

1At this point we assume L = M . A restriction that will be removed
later.

The constants G(Λc) and G(SL) in (2) describe the dimensionless

normalized second moment of inertia of respectively the central lat-

tice Λc and an L-dimensional sphere [16]. The constant ψL is the
dimensionless expansion factor, see [7, 8] for details.

The scaling of the central quantizer is given by ν and depends

upon the source and channel characteristic. The optimal ν is given

by

ν = 2L(h(Y )−R)

 
1

K − 1

K̂2

K̂1

G(SL)

G(Λc)
ψ2

L

!L(K−1)
2K

, (4)

and the optimal redundancy N is, for a fixed K, independent of the

sublattices as well as source and target entropies, that is

N =

 
(K − 1)

K̂1

K̂2

G(Λc)

G(SL)

1

ψ2
L

!L(K−1)
2K

. (5)

3.3. Optimal bit distribution
Each segment s leads to M MDCT coefficients which we vector

quantize using an MD-LVQ. Since the number of coefficients in the
MDCT is quite large, e.g. M = 1024 in our case, it is necessary

to split the sequence of M coefficients into smaller vectors to make

the quantization problem practically feasible. Any small number of

coefficients can be combined and jointly quantized. For example if
the set of M coefficients is split into M ′ bands (vectors) of length Lk

where k = 0, . . . , M ′ − 1 it can be seen from (2) that the distortion

of band k is given by

dk = K̂1G(Λk)22(h(Yk)−Rc
k
) + K̂2ψ

2
Lk

G(Sk)22(h(Yk)−Rc
k
)

× 2
2K

K−1
(Rc

k
−Rk) + pK 1

L
E[‖Yk‖2], (6)

where we allow the quantizers Λk to vary among the M ′ bands.
The number of packets K is fixed for all the M ′ bands in a given

segment, but may vary from segment to segment. For a given target

entropy R∗ we need to find the individual entropies Rk for the M ′

bands, such that
P

Rk = R∗/K and in addition we need to find the
entropies Rck

of the central quantizers. For simplicity we assume in

the following that the M ′ bands are of equal dimension L and that

geometrically similar central lattices Λc are to be used. Furthermore,

Eqs. (4) and (5) hold for any bit distribution, hence we may insert (4)
and (5) into (6) which leads to individual distortions given by

dk = a02
h(Yk)−Rk + pK 1

L
E[‖Yk‖2],

where a0 is independent of k and given by

a0 = K̂1G(Λc)

 
1

K − 1

K̂2

K̂1

G(SL)

G(Λc)
ψ2

L

!K−1
K

.

In order to find the optimal bit distribution among the M ′ bands sub-

ject to the entropy constraint
P

Rk = R∗/K we take the common
approach of turning the constrained optimization problem into an

unconstrained problem by introducing a Lagrangian cost functional

of the form

J =

M′−1X
k=0

dk + λ

M′−1X
k=0

Rk. (7)

Differentiating (7) w.r.t. Rk leads to

∂J

∂Rk
= −2 ln(2)a02

2(h(Yk)−Rk) + λ. (8)

After equating (8) to zero and solving for Rk we get

Rk =
1

2
log2

„
λ

2 ln(2)a0

«
+ h(Yk). (9)
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In order to eliminate λ we invoke the sum-rate constraint
P

Rk =
R∗/K and rewrite (9) as

R∗/K =
1

2
log2(λ)M ′ − 1

2
M ′ log2(2 ln(2)a0) +

M′−1X
k=0

h(Yk),

from which we obtain

λ = 2 ln(2)a02
2

M′
(R∗/K−

P
h(Yk)). (10)

We can now eliminate λ by inserting (10) into (9), that is

Rk =
R∗/K −Ph(Yk)

M ′
+ h(Yk). (11)

With the simple Lagrangian approach taken here there is no

guarantee that the entropies Rk given by (11) are all non-negative.

It is possible to extend the Lagrangian cost functional (7) by M ′

additional Lagrangian weights in order to obtain M ′ inequality con-

straints making sure that Rk ≥ 0 in addition to the single equality

constraint
P

Rk = R∗/K. However, in this particular case this ap-

proach does not appear to lead to a closed-form expression for the

individual entropies Rk . It is not possible either to simply just set-
ting negative entropies equal to zero since this will most likely vio-

late the constraint
P

Rk = R∗/K. Instead we propose a procedure

where we begin by considering all M ′ bands and then one-by-one

eliminate bands having negative entropies. Among the bands get-
ting assigned a negative entropy, we find the one having the largest

negative entropy and exclude that one from the optimization process.

This procedure continues until all entropies are positive or zero as

shown below.

1. I = {0, . . . , M ′ − 1}
2. c = R∗/K−h

|I|
, where h =

P
k∈I h(Yk)

3. R = {Rk : Rk = c + h(Yk) and Rk < 0, k ∈ I}
4. If |R| > 0 then goto 2 and set I := I\j,

where Rj ≤ Rk,∀k ∈ I

5. Rk =

(
c + h(Yk) k ∈ I
0 otherwise

Table 1. Bit allocation algorithm.

The motivation for this approach is that ultimately we would

like the contribution of each band to the total distortion to be equal,

since they are all approximately equally sensitive to distortion. How-
ever, the MDCT coefficients in some bands have variances which are

smaller than the average distortion, hence assigning zero bits to these

bands leads to distortions which are lower than the average distortion

over all bands. Therefore, the bit budget should only be distributed
among the higher variance components.

4. ROBUST PERCEPTUAL TRANSFORM CODER
4.1. Encoder
We will use the transform coder presented in Section 2. Each seg-

ment is encoded into K descriptions independent of previous seg-

ments in order to avoid that the decoder is unable to successfully

reconstruct due to previous description losses.
As discussed in Section 3.3 it is infeasible to jointly encode

the entire set of M normalized MDCT coefficients and instead we

split y into disjoint subsets. Based on the differential entropies of y
and the target entropy R∗ we find the individual entropies Rk, k =
0, . . . , M ′ − 1 by using the algorithm described in Table 1.

The entropy Rk describes the total entropy assigned to the kth

subset of bands. If the number of descriptions is K then each side

quantizer operates at an entropy of Rk/K bits. Knowledge of Rk ,
the differential entropy h(Yk), the number of descriptions K and the

packet-loss probability p makes it possible to find the scaling factors

νk and Nk of the central and side quantizers, respectively by use

of (4) and (5). This in turn completely specifies an MD-LVQ having
K descriptions. Each normalized vector of MDCT coefficients yk is

then first quantized with the central quantizer Qk(yk) = λck
after

which an index assignment α(λck
) = {λ0k

, . . . , λKk−1} is applied

in order to find the codewords of the side quantizers. The codewords
of the side quantizers are losslessly encoded and put into K individ-

ual packets. Each packet then contains M ′ encoded codewords.

In order to be able to reconstruct the quantized MDCT coeffi-

cients it is required that the perceptual weight µ is included in all

K packets. In [17] it was shown that µ can be effectively encoded
at 4 kbps. In this work we assume that µ can be encoded at 4 kbps,

hence if the total target entropy is R∗ = 96 kbps and two packets are

to be used (K = 2), the entropy we actually use for the MD-LVQ is

then only 88 kbps.

4.2. Decoder
At the receiving side an estimate ŷ of the normalized MDCT spec-

trum is first obtained by simply taking the average of the received
descriptions, i.e. ŷk = 1

κ

P
i∈l λik

, where l denotes the indices of

the received descriptions and κ = |l|. This estimate is then denor-

malized in order to obtain x̂, i.e. x̂k = ŷk/
√

µk. Finally the inverse

MDCT is applied in order to obtain an approximation ŝ of s.

5. RESULTS

In this section we compare numerical simulations with theoretical

results and in addition we show the results of a subjective listening

test. For both tests we use three audio clips of different genres (jazz,
German male speech and pop) each having a duration between 10

and 15 sec. and a sampling frequency of 48 kHz. We set the target

entropy to 96 kbps which corresponds to 2 bit/dim. For simplicity

we assume that the sources are stationary processes so that we can
measure the statistics for each vector of MDCT coefficients upfront.

However, since audio signals in general have time varying statistics

we expect that it will be possible to reduce the bit rate by proper

adaptation to the source. Since for this particular test we are merely
interested in the performance of the proposed audio coder with a

varying number of descriptions we will not address the issue of effi-

cient entropy coding but simply assume that the quantized variables

can be lossless encoded arbitrarily close to their discrete entropies.
Table 2 shows the discrete entropies of the quantized normalized

MDCT coefficients for the three test fragments.

K = 2 K = 2 K = 3 K = 3 K = 4 K = 4
kbps bit/dim kbps bit/dim kbps bit/dim

Jazz 96.22 1.00 97.09 0.67 96.87 0.51

Speech 93.48 0.98 96.00 0.67 96.47 0.50

Pop 93.76 0.98 95.38 0.66 95.60 0.50

Table 2. Discrete entropies. The columns showing [bit/dim] are

expressed as entropies per description.

Because of the short duration of the test fragments the resulting
expected distortions depend upon the realizations of the packet loss

patterns. This phenomenon has been noted by other authors, c.f. [4].

We therefore decided to average the distortion results over three dif-

ferent loss patterns. The theoretical and numerical obtained expected
distortions for the jazz signal are shown in Fig. 1.
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Fig. 1. Expected distortion as a function of packet-loss probability.

As can be seen in Fig. 1 the expected distortions depend not only

on the packet-loss rate but also upon the number of descriptions. At

high packet-loss rates it is advantageous to use a higher number of

packets.

To verify these findings we performed an additional subjective
comparison (MUSHRA [18]) test, see Fig. 2. The packet-loss rates

in the test are p = 0.1, p = 0.3 and p = 0.5 and we have aver-

aged results over nine listeners and over the three different test frag-

ments. At each packet-loss rate the original signals were encoded
using K = 1, 2, 3 and 4 descriptions. Also included in each test

were the hidden reference and two anchor signals (3.5 kHz and 7

kHz lowpass filtered signals). The circles in Fig. 2 denote mean val-

ues and the bars describe 95% confidence intervals. Notice that for
p = 0.3 and p = 0.5 there is a significant preference for using more

than two descriptions.
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Fig. 2. MUSHRA test results where the seven signals appear in the

following order: Hidden ref., 3.5 kHz, 7 kHz, K = 1, 2, 3 and 4.
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