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ABSTRACT
In this article we investigate rate-distortion optimal temporal noise
shaping for transform audio coding. Temporal noise shaping, or
TNS, is a technique for reshaping the quantization noise in the time
domain through open-loop linear predictive coding of frequency do-
main coefficients. Traditionally, a selection mechanism based on
prediction gain is employed to determine whether it is advantageous
to apply TNS or not. Although this method is effective for reducing
coding artifacts in transient and speech signals, critical adjustment of
the prediction gain threshold is necessary to avoid excessive bit rate
demands. We propose the use of TNS in a rate-distortion optimiza-
tion framework. Within this framework a jointly optimal selection
of the prediction filter order and the quantizer for coding the coeffi-
cients can be made, such that the perceptual distortion is minimized
for a given target rate. Experimental results for an MDCT-based au-
dio coding system are presented and it is shown that TNS within an
RD optimization framework outperforms the existing TNS method.

1. INTRODUCTION

In audio coding applications the goal is to minimize the perceptual
distortion introduced by the coding process whilst satisfying a bit
rate constraint. This goal can be achieved by the application of an
operational rate-distortion (RD) optimization approach [1, 2] that
reaches the solution to the audio coding problem for a given coding
environment and allows for optimal selection of the involved coding
parameters. For example, the work in [3] applies this approach in an
MPEG-2/4 AAC audio coder [4, 5].

Most audio coding schemes rely on a time-frequency analysis
of the input signal and typically, an MDCT is applied for this pur-
pose. The MDCT has desirable properties, such as good channel
separation, strong stopband attenuation, minimum blocking artifacts
and the availability of fast algorithms. Additionally, there are vari-
ous techniques available for efficient resolution switching to further
enhance the performance. Temporal noise shaping (TNS) [6, 7] is
such a technique that allows for block-continuous adaptation of the
time-frequency resolution

In this paper, we propose an operational rate-distortion optimiza-
tion framework for TNS in an MDCT-based audio coder. The paper
is organized as follows. In Section 2 the traditional TNS technique is
explained and some of its potential problems are highlighted. Next,
we propose an RD optimal temporal noise shaping algorithm in Sec-
tion 3. Finally, both quantitative and qualitative experimental results
for encoding several audio fragments with an MDCT-based audio
coding scheme are presented in Section 4.
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2. TEMPORAL NOISE SHAPING

TNS [6, 7] is a technique for reshaping and controlling the quanti-
zation noise in the time domain through open-loop linear predictive
coding (LPC) of frequency domain coefficients. Given a block of
signal samples that is transformed to the frequency domain, an LPC
filter is applied on a (sub)set of transform coefficients and instead of
direct quantization of the frequency domain coefficients, the filtered
residual is quantized along with the LPC filter coefficients. Upon re-
construction of the time domain signal, the inverse LPC filter is ap-
plied on the quantized residual before the inverse signal transform.
This inverse LPC filter acts as a temporal envelope that shapes the
quantization noise according to the signal energy distribution over
the segment, thereby permitting a coder to exercise control over the
temporal structure of quantization noise within a set of frequency
coefficients. Thus, most of the quantization noise will reside in
signal regions with significant energy in the time domain, thereby
avoiding temporal masking problems in coding transient and speech
signals, such as pre-echos and reverberation.

TNS is part of the MPEG-2/4 AAC standard [4, 5] where it is
applied on coefficients obtained from using a modified discrete co-
sine transform (MDCT) on the input signal. The MDCT is a so-
called 50% overlapped block transform, i.e. a transform where sam-
ples from consecutive 50% overlapping segments are windowed and
transformed. Given a signal x divided into overlapping segments of
length 2M , a set of M transform coefficients Xi is computed from
the ith segment xi by applying the direct MDCT, which is defined
as

Xi(k) =

2M−1∑
n=0

xi(n)w(n) cos
[ π

4M
(2n + M + 1)(2k + 1)

]
,

where k = 0, 1, . . . , M−1 and w an appropriate analysis window.
Assume that Xi has variance σ2

Xi
. A pth order linear prediction

X̃i of Xi is given by

X̃i(k) =

p∑
j=1

ajXi(k − j).

The prediction error signal ∆Xi(k) = Xi(k)−X̃i(k) with variance
σ2

∆Xi
is then computed (in the Z-transform domain) as

∆Xi(z) = Xi(z)A(z),

with A(z) = 1 −
∑p

j=1
ajz

−j . We want to find the filter A(z) that

minimizes σ2

∆Xi
and thus maximizes the prediction gain σ2

Xi
/σ2

∆Xi
.

This can be done efficiently with the well-known Levinson-Durbin
recursion algorithm.
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Fig. 1. Block scheme of a standard TNS implementation based on
prediction gain. The RD optimization block is only applied in our
experimental tests and is explained in Section 3.

In many implementations of TNS in the AAC standard, the predic-
tion gain is used to determine whether TNS should be applied or
not. First, for a block of MDCT coefficients a high order (e.g. 12
or 20) LPC filter is computed with the autocorrelation method using
the Levinson-Durbin (LD) algorithm. If the prediction gain is larger
than a certain threshold TPG, TNS is applied. The Levinson-Durbin
algorithm generates a set of reflection coefficients r. The final LPC
filter order p′ is determined by subsequently removing reflection co-
efficients having an absolute value lower than a threshold Tr from
the reflection coefficient array. This procedure lowers the side infor-
mation for sending the filter coefficients. A block scheme of a typical
TNS implementation, which we shall refer to as TNS PG (prediction
gain), is shown in Fig. 1. We can distinguish two separate quantizer
blocks since it is generally efficient to have separate quantizers for
unfiltered and filtered MDCT coefficients.

It has been recently recognized that TNS can cause several un-
desirable coding artifacts [8]. For example, the quantization noise
increases with the LPC filter order and is amplified around attacks,
which might result in unmasked quantization noise. Moreover, the
prediction gain does not always accurately represent the coding per-
formance resulting from TNS usage. If TNS is applied, but the ac-
tual coding performance turns out to be insignificant, a large portion
of the available bit rate unnecessarily goes to the filter coefficients.
Clearly, the choice of the thresholds on prediction gain TPG and
reflection coefficients Tr is a delicate one, since it determines both
the side information for sending the filter and the occurrence of un-
desired artifacts. Therefore, the thresholds should be made depen-
dent on the target bit rate, which requires a difficult tuning process.
The method in [8] proposes a perceptual entropy measure for deter-
mining the usage of TNS. This is basically a one-sided bit rate cost
measure, since perceptual entropy can be seen as the minimal bit rate
for transparent audio coding. We extend this notion to a two-sided
cost measure of both bit rate and perceptual distortion.

3. RD OPTIMAL TNS

In an operational RD optimization framework [1, 2], the distortion
D is minimized subject to a bit rate constraint RT for a given coding
environment. In the TNS case the coding environment consists of
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Fig. 2. Block scheme of the proposed TNS implementation in an RD
optimization framework.

an MDCT-based audio coding system for coding a signal consisting
of, say N , overlapping segments. Given a set of LPC filter orders P
and a set of quantizer stepsizes Q for coding the MDCT coefficients,
either directly or after LPC filtering, we want to select for the ith
segment xi the LPC filter order pi ∈ P and the quantizer stepsize
qi ∈ Q that jointly minimize the perceptual distortion, denoted by
Dπ for a given target rate RT . Note that a zero-order LPC filter, i.e.
pi = 0, indicates direct coding of the MDCT coefficients. Fig. 2
shows a block scheme of the RD-based TNS algorithm, referred to
as TNS RD.

Let p be the N -dimensional vector consisting of the selected
filter orders for all N segments and let q denote the vector con-
taining the N quantizer stepsizes. The rate-constrained problem of
minimizing Dπ subject to RT can then be written as

min
p

min
q

Dπ(p,q) s.t. R(p,q) ≤ RT ,

which can be converted into the unconstrained problem

min
p

min
q

J(λ,p,q), (1)

where J(λ,p,q) = Dπ(p,q) + λR(p,q) is a Lagrangian cost
function of perceptual distortion Dπ and bit rate R for coding the
complete signal. The parameter λ ≥ 0 has to be chosen such that
the target rate is met, i.e. R(p,q) = RT . The bit rate can be split
up into contributions from the coded -and possibly filtered- MDCT
coefficients and side information, such as the LPC filter order, the
quantizer stepsize and the coded LPC filter coefficients. Under the
assumptions of additivity of the cost measure and independent cod-
ing over segments (or, equivalently, independence of the cost mea-
sure over segments), the problem from Eq. (1) can be formulated
as

min
p

min
q

N∑
i=1

Ji(λ, pi, qi) =

N∑
i=1

min
pi∈P

min
qi∈Q

Ji(λ, pi, qi), (2)

where Ji(λ, pi, qi) = Dπ,i(pi, qi) + λRi(pi, qi) denotes the cost
for segment xi. As previously mentioned, λ has to be chosen such
that the target rate is met. Hence, if R(p,q) �= RT , we have to
modify λ and solve Eq. (2) for the new λ. This is a convex problem

V  190



in λ and fast algorithms exist to solve the problem, e.g. the bisection
algorithm in [1].

Given that the MDCT coefficients obtained for segment xi are
filtered with an LPC filter of order p and quantized with stepsize
q, the perceptual distortion Dπ,i(p, q) is derived as a perceptually
weighted squared sum of the difference between the original MDCT
coefficients Xi before TNS and the quantized coefficients X̂p

i after
the inverse TNS operation, that is,

Dπ,i(p, q) =

M−1∑
k=0

αi(k)
[
Xi(k) − X̂p

i (k)
]2

. (3)

The set of M perceptual weighting coefficients αi is taken as the
inverse masking curve for segment xi evaluated at the MDCT center
frequencies, i.e. αi(k) = msk−1

i ( π
M

(k + 1

2
)), k = 0, 1, . . . , M−1.

This has the desired effect that spectral distortions in frequency re-
gions with strong masking power are de-emphasized. Moreover, if
the TNS and subsequent quantization operations are performed on
the weighted coefficients X ′

i = αiXi, computing the �2 distortion
values for the weighted coefficients is equivalent to computing the
perceptual distortions with Eq. (3), under high-resolution assump-
tions.

4. EXPERIMENTAL RESULTS

In our experiments, a simple implementation of TNS in an MDCT-
based audio coding system was considered. The LPC filters were
applied on the complete set of MDCT coefficients. Although the
quantization of the LPC filter coefficients can be taken into account,
errors due to imperfect modelling of the LPC filter were neglected
in this study. As discussed in the previous section, for every seg-
ment of the input signal both the LPC filter order and the coding
template were selected that minimized the perceptual distortion over
all segments, subject to a target rate constraint for coding the com-
plete signal. We compared this implementation with both a system
not employing TNS and the existing TNS method, i.e. based on pre-
diction gains. In all three systems the selection of quantizers was
performed in an RD optimal manner, as outlined in the previous sec-
tion.

A 1024-channel MDCT was used, similar to the AAC long block
operation, along with a 2048-sample Kaiser-Bessel derived window.
Masking curves for each segment were computed according to the
perceptual model in [9]. Based on settings in [5], the maximum
LPC filter order was set to 20 and the prediction gain threshold TPG

for selection of TNS was set to 1.4 dB. The threshold for discard-
ing high-order reflection coefficients was set to Tr = 0.1. For both
direct and TNS filtered coefficients, eight quantizer stepsizes were
available, including a stepsize for quantizing all coefficients to zero,
and corresponding Huffman codebooks were designed. Addition-
ally, efficient coding of long zero regions was applied. As a dis-
tortion measure, the perceptual distortion measure Dπ from Eq. (3)
was taken and the Huffman codewords were used to determine the
bit rate. The side information consisted of the LPC filter order (5
bits), the filter coefficients (4 bits per filter coefficient) and the quan-
tizer stepsizes (3 bits). The perceptual weighting coefficients, de-
rived from the masking curve were assumed to be coded at 4 kbps,
in line with results from [10]. A set of four audio fragments (48 kHz,
16-bit, mono) was used for evaluation of the three algorithms, con-
sisting of the castanet, German male speech, bass guitar and English
female speech signals.
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Fig. 3. Upper plot: 3s of German male speech signal. 2nd plot: Re-
construction error signals for the 3 methods. 3rd plot: Bit allocation
over segments for the 3 methods. Lower plot: LPC filter order for
PG-based method and RD-based method.

4.1. Results for single fragment

Fig. 3 presents coding results for 3 seconds of the German male
speech fragment (upper plot), coded at 32 kbps. In the 2nd plot,
the reconstruction error signals are displayed for the three algorithms
and we see that the RD-based algorithm leads to reconstruction noise
that is shaped similarly to the PG-based method. The 3rd plot shows
the bit allocation over segments, where the number of bits for both
transform coefficients and side information per segment is shown.
The standard TNS method lowers the peak bit rate demand com-
pared to the system without TNS, however, bit shortages still occur
at several positions in the signal, mainly during segments with low
energy signal content. This can be explained from the fact that at low
bit rates, the existing schemes frequently run out of bits in various
segments. Since selection of the stepsize that quantizes all coeffi-
cients to zero requires very few bits, this remains the only choice
at these segments, thereby creating gaps in the reconstructed signal.
Although this gap artifact can not be attributed to the TNS algorithm
directly, it is a clear example of inefficient use of the available bits
when the TNS algorithm operates outside the rate-distortion con-
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Fig. 4. Rate vs. perceptual distortion plots for the set of four audio
fragments.

trol in this coding framework, or when not using TNS. In contrast,
the RD-based method reduces the bit demand even further and facili-
tates a more continuous bit rate distribution over various signal parts.
This allows for a more continuous signal modelling. The bit savings
can be explained from the lower plot, where it is seen that the RD-
based algorithm selects high order LPC filters only at critical signal
parts. In contrast, the standard method uses a high order LPC fil-
ter almost exclusively, which in some cases requires an unnecessary
high amount of bits.

4.2. Results for multiple fragments

For the four signals, objective perceptual distortions for different tar-
get bit rates ranging from 18 to 64 kbps are presented in Fig. 4. It
can be seen that the RD-based method results in the lowest percep-
tual distortion at every bit rate for all fragments. In order to sub-
jectively evaluate our scheme, a MUSHRA [11] listening test was
performed for evaluating the four fragments at a bit rate of 36 kbps.
At this bit rate, no obvious time gap artifacts where present in the
coded fragments where TNS was applied. A total of ten listeners
participated (authors not included). The results averaged over all lis-
teners are displayed per fragment in Fig. 5. For three fragments, the
RD-based method significantly outperforms the PG-based method.
Only for the German male speech fragment no significant improve-
ment is observed. This can be explained as follows. Since a percep-
tual model is used that accounted for simultaneous masking only,
the RD-based method does not concentrate specifically on time do-
main coding artifacts such as speech reverberation. The PG-based
method determines TNS usage outside the perceptual model, hence
a larger reduction of these artifacts is obtained than with the RD-
based method. Therefore, we expect improved performance when a
perceptual model that incorporates temporal masking is applied. We
conclude that the main contribution of the proposed algorithm lies in
increased bit rate reduction compared to the existing method. This
performance gain is obtained at a higher complexity, mostly deter-
mined by the repeated inverse IIR filtering. Therefore, complexity
reductions will focus at estimating the perceptual distortion in the
LPC filtered domain.
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Fig. 5. MUSHRA test results for the original, the anchors and the
coded versions without TNS, PG-based TNS and RD-based TNS.
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