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ABSTRACT

We propose in this paper a two-stage lossless audio coder

for stereo signals. The first stage is based on a hybrid ap-

proach that uses either a stereo linear prediction or a multi-

layer perceptron-based (MLP) nonlinear prediction. The sec-

ond stage is based on two cascaded Normalized Least Mean

Square (NLMS) filters that remove the remaining redundancy

in the residuals of the stereo prediction. The obtained com-

pression ratios are equal or superior to the best state-of-the-art

coders.

1. INTRODUCTION

State-of-the-art lossless audio coders (e.g. MPEG-4 ALS [1],

LPAC [2], Monkeys [3]) use linear prediction to remove re-

dundancy from an audio signal. In earlier coders, linear pre-

diction was applied on mono signals or on each channel of

stereo signals. To take advantage of the correlation that ex-

ists between the two channels of a stereo signal, a technique

called joint-channel linear prediction has been proposed in [4]

and then implemented in the LPAC coder [5]. The idea is to

perform simultaneously an intra- and interchannel decorrela-

tion. This technique has shown very good results; however,

the predictor coefficients can’t be quantified using efficient

techniques such as line spectral frequencies (LSFs) and it is

necessary to code them by scalar quantization with at least 12

bits per coefficient to keep the decoder stable. To get around

the transmission of the coefficients, a backward approach was

proposed in [6]. In this approach, the coefficients are esti-

mated on the previous frame of the audio signal, instead of on

the current frame, but the resulting predictor is applied to the

current frame. Since the encoder and the decoder can perform

exactly the same operation on the past audio signal, there is

no need to quantize and transmit the prediction coefficients as

in the forward approach. The results obtained were promising

and we follow this approach in our paper.

We first propose an extension of this technique to the non-

linear case using neural networks. This backward nonlinear
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stereo prediction is the basis of the first stage of our coder.

Such types of nonlinear predictions have been studied for

speech coding purposes in the papers of Faundez et al. (see

for example [7, 8]).

As the residuals of the nonlinear prediction are not fully

decorrelated, we propose a second stage based on two cas-

caded NLMS filters for each residual. Cascaded adaptive lin-

ear prediction for lossless audio coding was first proposed in

[9] and [10]. In these papers, the prediction was performed

directly on an input mono signal. We use a similar technique

to remove the redundancy that remains in the residuals of the

joint-channel prediction. This second stage improves greatly

the decorrelation of the stereo signal.

The remainder of this paper is structured as follows. Sec-

tion 2 presents the first stage of our coder. Section 3 presents

the second stage. Results are given in Section 4 and conclu-

sions in Section 5.

2. FIRST STAGE: HYBRID LINEAR/MLP STEREO
PREDICTION

The first stage is based on a hybrid approach using, for each

frame and for each channel, either a joint-channel linear pre-

diction or a joint-channel nonlinear prediction; the model whi-

ch maximizes the prediction gain is chosen. A backward anal-

ysis is used: the predictor coefficients are estimated from the

past decoded signal, which is available at both the encoder

and the decoder. The backward analysis has the advantage

to avoid the quantization and the transmission of the predic-

tion coefficients as in the forward approach. We first outline

the nonlinear prediction we use which is based on neural net-

works. Then the hybrid approach is introduced.

2.1. The neural network structure

The choice of the neural network structure is very important

because it determines the performance of the predictor. In-

deed, in a backward configuration, the network is trained on

a frame and tested on the next frame. The network does not

have to be specific only for the data used for the training, it

has to be able to generalize. If the network models the frame
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used for the training perfectly but is not able to model the test

frame, the network is said to be overtrained [8]. To limit over-

training, a very simple but efficient structure is used: a Multi-

Layer Perceptron (MLP) network with one hidden layer com-

prising one neuron. Its input-output function is:

x̂ [n] = w2,1f

(
P∑

k=1

w1,kx [n − k]

)
+ b (1)

with x [n − k] the input samples, x̂ [n] the predicted sample,

P the prediction order, f the transfer function of the hidden

neuron (sigmoid), w1,k the weights of the first layer and w2,1

and b the weight and the bias of the second layer.

2.2. Extension to the stereo case

By analogy with the joint-channel linear prediction, we pro-

pose a joint-channel nonlinear prediction using two neural

networks, one for each channel. The input-output function

of the left-channel network is:

x̂1 [n] = w2,1f (y) + b (2)

y =
P1∑

k=1

w1,kx1 [n − k] +
P2∑

k=1

w1,k+P1x2 [n − k] (3)

with x1(n) the left-channel signal, x2(n) the right-channel

signal, x̂1(n) the predicted left channel signal, P1 the auto-

predictor order and P2 the crosspredictor order. For the right

channel, as the left and right channels are interleaved, the new

sample x1(n) can be used to predict x2(n) [5]. The sum cor-

responding to the crosspredictor consequently starts at index

0 rather than at index 1 in the following equation. This tech-

nique greatly improves the prediction gain of the right channel

if the channels are highly correlated. The input-output func-

tion of the right-channel network is:

x̂2 [n] = w
′
2,1f (y) + b

′
(4)

y =
P1∑

k=1

w
′
1,kx2 [n − k] +

P2∑
k=0

w
′
1,k+P1+1x1 [n − k] (5)

2.3. Initialization and training of the neural networks

To better adapt the model to the signal, a “subframe” analy-

sis is performed. The predictor parameters are updated four

times per frame. Consequently, if the length of a frame is N ,

the parameters are kept constant on a “subframe” of length

N/4 (Fig. 1).

To initialize the weights and bias of the neural network,

we use the neural network parameters computed from the

previous frame. As the successive frames are quite similar,

this method greatly increases the training of the network com-

pared to a random initialization.

Fig. 1. The principle of subframe analysis for the MLP pre-

dictor

To train the neural networks, the Levenberg-Marquardt al-

gorithm is used. This algorithm is very fast. But its computa-

tional cost increases greatly with the size of the network, and

it is usually used only for small networks like the one in this

paper. To limit overtraining, the number of epochs (or iter-

ations) of the training algorithm is set to only 10. This also

limits the complexity.

2.4. Hybrid approach

In some frames, linear prediction gives a better prediction

gain than nonlinear prediction (neural networks). Thus, we

use a hybrid approach as in [7]: for each frame and for each

channel, two analyses are performed (one linear and one non-

linear), the prediction gains obtained with each analysis are

then calculated, and finally, for each channel, the best predic-

tor is chosen. The linear prediction used is the same as in [6]:

the analysis is performed on an extended frame weighted with

an asymmetric window. The Cholesky decomposition is used

to invert the matrix. In order for the decoder to know which

prediction was used for each channel, two bits per frame are

sent to the decoder.

Fig. 2. First stage: hybrid Linear/MLP stereo prediction
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3. SECOND STAGE: CASCADED NLMS FILTERING

The second stage is based on two cascaded NLMS filters for

each channel. These filters remove the redundancy that re-

mains in the residuals of the joint-channel prediction. An

NLMS filter is the normalized version of the standard LMS

filter. This algorithm is summarized in Equations (6) to (9):

1. Initialization

h0 = 0 (6)

2. Loop

x̂ (n) = hT
nxn (7)

e(n) = x(n) − x̂ (n) (8)

hn+1 = hn + µ
xn

δ + ‖xn‖e(n) (9)

with x(n) the input signal (first stage residual in the left or

right channel), xn = [x(n − 1), ..., x(n − P )]T the vector

corresponding to P past values of the input signal, P the or-

der of the filter, hn = [h(1), ..., h(P )]T the filter coefficients

vector, e(n) the prediction error and δ a small constant that

avoids a division by 0. Constant µ is a parameter we fix exper-

imentally in order to maximize the average compression ratio

over several test audio files. The best results are obtained us-

ing two cascaded NLMS filters for each prediction error, the

first one having an order of 200 with µ = 0.07, the second

having an order of 10 with µ = 0.03. The overall scheme of

the two-stage coder is shown in Fig. 3. The Rice code [11] is

used to code the samples of the prediction residuals.

Fig. 3. The proposed two-stage lossless audio coder

4. EXPERIMENTAL RESULTS

4.1. Prediction gains

To limit the complexity of the system, we found that the fol-

lowing values are a good compromise: an autoprediction or-

der of P1 = 20, an interprediction order of P2 = 10. The

frame length is 20 ms (N=960 at 48kHz). The analysis is

performed four times a frame, leading to a 5 ms subframe

analysis.
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Fig. 4. Comparison of the linear and non-linear prediction

gains

Fig. 4 compares, for each frame of the left channel of

a speech signal (48kHz), the gains obtained with the joint-

channel MLP predictor described in the previous section to

the gains obtained with the joint-channel linear predictor of

[6]. We notice that the gain compared to the linear prediction

is not always positive. For several frames, the linear predic-

tion gives better prediction gains than the nonlinear predic-

tion. For a speech signal, it generally corresponds to the un-

voiced parts of the signal. This illustrates well why we use a

hybrid approach (mix of linear and non-linear prediction).

Average prediction gains obtained with the linear and the

hybrid approaches are shown in Table 1. The signals used for

these experiments are taken from an MPEG test base, and all

are sampled at 48 kHz. These results reveal the superiority

of the hybrid approach, which clearly outperforms the linear

predictor.

Speech Linear Hybrid
Left channel 22.19 dB +2.43 dB

Right channel 39.09 dB +8.03 dB

Pop music
Left channel 22.45 dB +3.81 dB

Right channel 19.17 dB +3.38 dB

Classical music
Left channel 29.51 dB +6.59 dB

Right channel 30.58 dB +7.06 dB

Table 1. Comparison of average prediction gains

The additional average prediction gains obtained with the

cascaded NLMS filters are shown in Table 2. The signals used

are the same as for the previous experiment. These results

show well that the residuals of the joint-channel prediction

are not fully decorrelated and the cascaded NLMS filtering
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can greatly improve the performance of the coder.

Speech NLMS
Left channel 1.54 dB

Right channel 2.51 dB

Pop music
Left channel 3.32 dB

Right channel 3.13 dB

Classical music
Left channel 5.12 dB

Right channel 5.43 dB

Table 2. Additional average prediction gains obtained with

the cascaded NLMS filters used in the second stage

4.2. Compression ratios

We compared the compression ratios of four lossless codecs.

Two state-of-the-art codecs, LPAC [2] and Monkey’s Audio

[3]. A third one, Codec A, based only on linear prediction

[6]. And the algorithm proposed in this paper, named Codec

B. LPAC uses forward linear prediction and is the predecessor

of the MPEG-4 ALS. Monkey’s Audio uses multiple passes

of several linear predictors with small orders and fixed pa-

rameters. Both coders are set to the maximum compression

mode. The tests were performed with 6 tracks of different

styles of music and also an MPEG test base. Table 3 shows

that Codec B outperformed Codec A. Moreover, the perfor-

mance of Codec B is equal or superior to the best state-of-

the-art coders.

Algorithm LPAC Monkeys A B

MPEG test 2.503 2.573 2.381 2.720

Born in the USA 1.424 1.461 1.418 1.461

Concerto 1.924 1.998 1.872 2.000

Cosmic girl 1.521 1.578 1.540 1.578

Luka 1.422 1.490 1.452 1.491

Polonaise 2.610 2.700 2.284 2.701

Training 1.582 1.621 1.568 1.617

Table 3. Comparison of the compression ratios

5. CONCLUSION

We have proposed in this paper a lossless audio coder whose

performance is equal or superior to the best state-of-the art

coders. Our coder operates in two stages. The first stage

is based on a backward joint-channel prediction that uses,

for each frame and for each channel, either an MLP neural

network or a linear predictor, depending on which approach

gives the best prediction gain. We have shown that this type

of prediction clearly outperforms the backward joint-channel

linear prediction used in [6]. The second stage is based on

two cascaded NLMS filters applied to the residual signal of

each stereo channel. As the residuals are not fully decorre-

lated, this filtering removes the remaining redundancy from

the prediction errors. We have shown that this second stage

greatly improves the performance of the first stage.

Possible future works would be to investigate other neural

network architectures, such as radial basis function networks

(RBF) or pipelined recurrent neural networks (PRNN).
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