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ABSTRACT

Block-based physical modeling is one of the most promis-
ing methods for digital sound synthesis. This technique pro-
poses to model and discretize each instrument element sepa-
rately and then, to implement their interaction. In this paper,
the use of the Linear Bicharacteristic Scheme (LBS) or up-
wind leapfrog is proposed for digital sound synthesis of string
instruments. It provides an efficient and accurate alternative
stencil to the classical leapfrog scheme of the Finite Differ-
ence Time Domain (FDTD) method. Moreover, the conver-
sion of dependent wave equation variables into characteristic
variables makes this method suitable to interact with Wave
Digital Filter models and others paradigms. This technique
is extensively presented and finally justified with some exam-
ples.

1. INTRODUCTION

Recently, physical modeling has arisen as an interesting alter-
native to digital sound synthesis. In this way, several paradigms
offer different advantages (i.e., see [1] for details). More-
over, block-based physical modeling grows as one of the most
promising research line [2] in this field. In this case, the
physical model is divided in different parts, and therefore,
each one is separately modeled and implemented. Further-
more, each part can be modeled by different modeling tech-
niques [3].

One of the most employed paradigm for string simulation
is the FDTD method [4]. Although it offers several advan-
tages for string simulation, the inherent dispersion forces to
increase the computional cost to solve it [5]. In this paper, the
Linear Bicharacteristic Scheme (LBS), or upwind leapfrog
scheme [6], arises as an alternative scheme to decrease the
effort for reducing the dispersion effect. LBS is a well-known
scheme for unsteady aeroacoustic and electromagnetism ap-
plications. It has a more compact stencil compared with the
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classical leapfrog scheme. Clustering the stencil around the
preferred directions (characteristics), it enables high accuracy
with a low order of operations (see Fig. 1 for details).
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Fig. 1. Stencil of : a) the FDTD leapfrog scheme, b) the LBS
right-going component and c) left-going component.

Furthermore, in this work, LBS is not only proposed for
digital audio synthesis and to reduce the computational cost,
but also this technique is modified in order to identify bichar-
acteristic variables with Wave Digital Filter (WDF) variables [7].
As will be shown in section 4, this approach modifies the orig-
inal method introducing additional refinements that provides
a flexible and transparent method to interconnect LBS with
WDF or other paradigms [3].

2. BLOCK-BASED MODEL

2.1. Wave equation

The fundamental of physical modeling is the description of
physical laws by means of differential equation. In this pa-
per, a simplified model of a string has been chosen, using the
linearized Mass Conservation (1) and Euler (2) equations and
including some non frequency-dependent losses terms.

∂p(x, t)
∂x

= −ρ
∂u(x, t)

∂t
− α∗u(x, t), (1)

∂u(x, t)
∂x

= − 1
ρc2

∂p(x, t)
∂t

− αp(x, t), (2)
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where p(x, t) and u(x, t) are the pressure and the parti-
cle velocity component, ρ and c are the density and speed of
sound respectively, and α∗ and α define the non frequency-
dependent losses terms. Note that the losses terms have not
physical meaning, but can be combined to obtain an approach
to the desired attenuation. Furthermore, they are susceptible
to include PML absorbing boundary conditions [?].

2.2. Block-based interaction

A complete description and characterization of a partial dif-
ferential equation (PDE) problem (such in this case, Eq. (1)
and (2)) requires a set of additional information: initial con-
ditions (IC) for temporal derivatives and boundary conditions
(BC) for spatial derivatives. In fact, the interaction between
blocks is expressed as a BC.

In a block-based model, the PDE that governs each block
can be carried out by means of different models. Assuming
a seamless transition from one model to the other, there has
to be a function that solves a global PDE on the combined
region. This is achieved when the differentiability is assured
in all points of the interface region between blocks (see [3] for
details). An usual and simple way consists into arranging the
interface points into pairs of ports variables and connecting
them to the appropriate pair of ports variables that share the
same boundary region.

3. WAVE DIGITAL FILTER MODELS

In order to achieve the interaction defined at section 2.2, Wave
Digital Filters (WDF) are used. WDF provide an smart and
efficient method to solve continuous networks in the discrete
time domain [7]. Their main advantage in this context is the
discretization process. The discretization is carried out sep-
arately for each network element by the bilinear transforma-
tion. Potential computational problems, e.g. delay-free-loops,
are avoided by the definition of the so called wave variables
(W-variables)

a = p + R · u, (3)

b = p − R · u. (4)

The variables a and b are called the incident and the re-
flected wave variables, respectively. This transition from the
Kirchhoff variables (K-variables) p and u to the W-variables
is the key point to a block-based system 1. By a proper choice
of port resistances R, WDFs offer the opportunity to make
independent the numerical method of each block from their
interaction by selecting the appropriate adaptor elements (see
[7]).

1Note that the impedance analogy [8] has been used, where classical elec-
tric notation of WDF has been substituted by acoustic variables.

4. LINEAR BICHARACTERISTIC SCHEME

In this section, first, some properties of the LBS are summa-
rized in order to understand their advantages. After that, the
details of LBS implementation are presented, centered in the
identification of characteristic variables with W-variables.

4.1. LBS Fourier Analysis

Several complete LBS Fourier analysis have already been car-
ried out (a detailed compilation of these results can be found
in [9]). Some of the most important information regards Fourier
analysis is summarized in this paper. The stability condition
for the LBS is ν ≤ 1, where ν is the Courant number, defined
as ν = c∆t/∆x, where c is the speed of sound and ∆t and
∆x are the time and spatial sampling, respectively.

As is mentioned previously, LBS offers some advantages
about classical leapfrog implementation. In the FDTD case,
the leading error term of the phase speed error in the leapfrog
scheme is given by

ΘFDTD =
4π2

6N2
ν(ν2 − 1), (5)

where N is the number of points per wavelength.
In LBS case, the leading error term of the phase speed

error is

ΘLBS =
4π2

12N2
ν(1 − ν)(1 − 2ν). (6)

Fig. 2 compares normalized phase speed at different ν, ac-
cording to Eq. (5) and (6). It can be observed that for achiev-
ing less than 1 % phase speed error, about N = 18 for the
FDTD method and about N = 7 for the LBS is required.
Moreover, Eq. (6) shows that the zero dispersion in the LBS
can be achieved with ν = 1 and ν = 0.5. These results show
that LBS can be 2-3 times more economical than the FDTD
method for the same level of accuracy [9].
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Fig. 2. Percentage error in phase speed versus grid resolu-
tion: a) FDTD and b) LBS. Plot parameter is Courant number
ν [10].
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4.2. Implementation

The LBS method operates transforming the dependent vari-
ables p and u into characteristic variables. Moreover, in this
paper, these variables are directly identified with W-variables
a and b. To transform Eq. (1) and (2) into characteristic form,
first Eq. (2) is multiplied by ρc and then substracted from (1)
multiplied by c, to give

c
∂(p + ρcu)

∂x
+

∂(p + ρcu)
∂t

+ α∗cu + αρc2p = 0, (7)

c
∂(p − ρcu)

∂x
− ∂(p − ρcu)

∂t
+ α∗cu − αρc2p = 0. (8)

Using definitions (3) and (4) and using the definition of
the acoustic impedance [8] R = ρc, these equations can be
rewritten as

∂a

∂t
+ c

∂a

∂x
+

k1

2
a +

k2

2
b = 0, (9)

∂b

∂t
− c

∂b

∂x
+

k1

2
b +

k2

2
a = 0, (10)

where

k1 =
(

αc +
α∗

ρ

)
, (11)

k2 =
(

αc − α∗

ρ

)
. (12)

To develop the discretized algorithm for a 1-D system,
the stencil of Fig. 1 a) and b) is followed for the LBS. To
obtain a solution without dissipation (this means no amplitude
errors), it is necessary that the stencil has central symmetry in
order to obtain a reversible scheme in time. A scheme without
dissipation means that integrating from given data at t = 0 to
a solution at t = T , and then, with time reversed, integrating
back to t = 0, the data are exactly recovered in amplitude
(apart from roundoff errors). The source terms require some
special attention in order to avoid an unstable result. In this
paper, they have been implemented following [10]. It found
an efficient and accurate scheme indexing the self source term
in Eq. (9), this means a, at time step n + 1 and to index the
coupled source term b at time level n. Eq. (9) follows the
same procedure.

Using the stencil of Fig. 1 and the source term indexing
scheme outlined above, the finite difference equations results

(an+1
i − an

i ) + (an
i−1 − an−1

i−1 )
2∆t

+ (13)

c

(
an

i − an
i−1

∆x

)
+

k1

2
an+1

i +
k2

2
bn
i = 0,

(bn+1
i − bn

i ) + (bn
i+1 − bn−1

i+1 )
2∆t

− (14)

c

(
bn
i+1 − bn

i

∆x

)
+

k1

2
bn+1
i +

k2

2
an

i = 0.

These equations are rewritten as

an+1
i = fn

1 /(1 + k1∆t), (15)

bn+1
i = fn

2 /(1 + k1∆t), (16)

where fn
1 and fn

2 are the residuals defined by

fn
1 = an−1

i−1 + (1 − 2ν)(an
i − an

i−1) − k2∆tbn
i , (17)

fn
2 = bn−1

i+1 − (1 − 2ν)(bn
i+1 − bn

i ) − k2∆tan
i . (18)

5. RESULTS

In order to demonstrate the viability of LBS for digital sound
synthesis of string instruments (1-D wave equation), an ex-
ample is presented. Fig. 3 shows the structure followed in the
example (see [1] for detailed WDF elements description). It
represents a very simplified string modeled by means of the
LBS approach presented in the paper. The string extremes are
modeled with a WDF mass and a WDF resistance. Two par-
allel adaptators are used in order to connect both WDF with
the string model.
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Fig. 3. String model implemented.

The values of the parameters do not correspond with any
real example, they are selected in order to facilitate visualiza-
tion of the properties. The length of the string is l=1 m, with
ρ = 1.21 kg/m3 and c = 680 m/s, as values of the density
and the speed of sound, respectively. It means that the string
resistance is Rs=822.8 kg/(m2·s). The sampling frequency is
fs = 44.1 kHz. The WDF components have a value of Rr =
5Rs and Rl = 2Lfs, with L = 0.1 kg·s/m2. The attenuation
values are α∗ = 200 kg/(m3·s) and α = 0.001 s/(kg·m). The
source has been implemented by means of a gaussian pulse
with a bandwidth W = fs/6.

The use of LBS takes its major advantages when ν = 0.5
(it is necessary the half of discrete points compared with ν =
1, it is non-dispersive and it have lower phase error), so this is
the value of Courant number used in this example.

Fig. 4 shows the simulation result. It represents the pres-
sure variable result of the wave equation under BC specified
in Fig. 3.

As is expected, the simulation does not show dispersion
effects for the Courant number selected. Furthermore, the
effect caused by the WDF at the extremes of the string can
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Fig. 4. Simulation of the one-dimensional wave-equation
with LBS technique.

be observed specially in the first reflection (approximately at
t=1.4 ms). As can be perceived, the effect of WDF inductance
(at x = 0) acts like a low-pass filter, whereas WDF resistor (at
x=1) produces a dissipation of energy. More complex WDF
structures, even nonlinearities, can be used at boundaries us-
ing the same procedure [11]. The simulations carried out with
ν=1 show similar results.

These results look promising and they make suitable the
use of this scheme into block-based physical modeling with
mixed strategies. In fact, it allows the use of the classical
FDTD properties [5] with an additional reduction of compu-
tational cost, due to the conversion between Kirchhoff and
wave variables is avoided [2] and the inherent properties of
LBS scheme.

6. CONCLUSIONS

In this paper, the use of linear bicharacteristic scheme into
block-based physical modeling mixing strategies is presented.
This scheme appears as an alternative to the classical leap-
frog scheme for the FDTD paradigm, providing a more eco-
nomical method keeping the same accuracy.

Furthermore, LBS is modified in order to identify bichar-
acteristic variables with W-variables, allowing a direct con-
nection with WDF and without additional calculations in or-
der to interact between them, obtaining successful results.
Extensions to two or three-dimensional problems should be
straightforward.
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