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ABSTRACT

Because of the limited spectro-temporal resolution 

associated with the implant device, cochlear implant (CI) 

patients are more susceptible to talker variability than 

normal hearing (NH) listeners. In the present study, the 

effect of a smooth GMM based spectral conversion 

algorithm on multi-talker sentence recognition was tested 

in CI patients. In a model of CI speech processing (4-16 

channels of spectrally degraded speech), talker distortion 

was significantly reduced with relatively few (~64) GMM 

components. CI patients’ sentence recognition was 

measured for one male (M1) and one female (F1) talker, as 

well as for spectrally converted speech (from M1 to F1 and 

from F1 to M1). Overall, CI users were sensitive to talker 

differences; some subjects performed better with M1, 

others with F1. After converting the spectrum of the less-

understood talker to that of the better-understood talker, 

recognition of the less-understood talker’s speech was 

significantly improved. The results suggest that smooth 

GMM-based spectral conversion may improve CI patients’ 

multi-talker speech recognition.  

1. INTRODUCTION 

Normal hearing (NH) listeners are able to understand 

speech from a variety of talkers, despite differences in 

acoustic characteristics (e.g., gender, age, accent, etc.). NH 

listeners are thought to use some form of “speaker 

normalization” to process speech from multiple talkers, in 

which the speech patterns from a variety of talkers are 

normalized to a central pattern template [1]. However, 

talker variability has been shown to affect multi-talker 

speech recognition by NH listeners. Multi-talker speech 

recognition is even more difficult for hearing-impaired (HI) 

and cochlear implant (CI) listeners [2]. For CI patients, 

increased susceptibility to talker variability may be due to 

the limited spectro-temporal cues needed to perform 

perceptual normalization. Distorted spectral information, 

due to the mismatch between the input acoustic frequency 

and electrode place of stimulation, may also contribute to 

poorer multi-talker speech recognition.  

In a previous study [3], a speaker normalization 

algorithm was used to improve multi-talker Chinese vowel 

recognition in a 4-channel acoustic simulation of CI 

processing. The analysis filter bank was adjusted to match 

the optimal reference pattern according to the ratio of the 

mean third formant frequency (F3) values between each 

talker in the multi-talker set and the reference talker (the 

talker that produced the best vowel recognition for each 

subject). Results indicated a small but significant 

improvement in subjects’ overall multi-talker vowel 

recognition; larger improvements were observed for each 

subject’s least-understood talker. However, linear warping 

according to talkers’ F3 position may not be sufficient to 

effectively normalize acoustic differences between talkers; 

other, more complex acoustic differences (e.g., formant 

bandwidth, spectral envelope, spectral tilt, prosodic 

variations, etc.) may also require normalization.  By using a 

continuous statistical model (e.g., Gaussian mixture model, 

or GMM) to compensate for acoustic differences between 

talkers, speech from a variety of talkers may be better 

matched to CI users’ optimal speech patterns. 

In the present study, a smooth GMM-based spectral 

conversion algorithm was used to convert speech patterns 

between a male and a female talker. A CI simulation model 

was used to test the spectral conversion effect under 

different spectral degradation. Sentence recognition 

with/without algorithm was tested in five CI patients. It 

was hypothesized that performance would be improved for 

the less-understood talker with the spectral conversion 

algorithm.  

2. METHODS

2.1. GMM-based spectral conversion 

V  141142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



A GMM allows the distribution of the observed parameters, 

represented by  mixture Gaussian components in the 

form of  
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 where p is the number of vector dimensions. The 

parameters of the model ( , , ) can be estimated using 

the well-known expectation maximization (EM) algorithm 

[4].  

Let  be the sequence of 

spectral vectors produced by the source talker, and let 

[    ... ]1 2 nx x x x n

[    ... ]1 2 ny y y y  be the time-aligned spectral vectors 

produced by the target talker.  The objective of the 

proposed spectral conversion algorithm is to define a 

conversion function  such that the total conversion 

error of spectral vectors
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is minimized over the entire acoustic space, using GMM. A 

minimum mean square error (MMSE) method was used to 

estimate the conversion function after GMM modeling of 

the source talker’s spectral distribution [5,6,7]. The 

conversion function was: 
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where is the posterior probability that the 

Gaussian component generates ; and are the 

mean target vector and cross-covariance matrix of the 

source and target vectors, respectively. When a diagonal 

conversion is used (i.e., and are diagonal), the above 

optimization problem is thus split into a scalar optimization 

problem. 
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2.2. Speech analysis and synthesis 

A Mel-scaled LSF feature was used for speech analysis 

because it is perceptually based and has smooth 

interpolation characteristics [6]. After frame-based speech 

analysis (20ms frame length; 7ms shift interval) and LPC 

coefficients extraction, LPC spectrum was converted to 

Mel-warped spectrum according to the relationship 

( ) 1125ln(1 / 700)M f f  [4]. The warped spectrum 

was then uniformly re-sampled with spline cubic phase 

interpolation to obtain the Mel-scaled LPC spectrum. A 

least square fit was used to convert the Mel-scaled LPC 

spectrum to Mel-scaled LPC coefficients, which were then 

converted to Mel-scaled LSF coefficients.  

In speech synthesis, a source filter model was applied 

in which the filter was the converted LPC spectrum and the 

source was the source talker’s residual.

2.3 CI speech simulation

A noise-band vocoder was used to simulate a CI speech 

processor fitted with the Continuous Interleaved Sampling 

(CIS) strategy [8]. The processor was implemented as 

follows. The signal was first pre-emphasized with a filter 

coefficient of 0.95. The input frequency range (100 – 6000 

Hz) was band-passed into a number of frequency analysis 

bands (24 dB/octave filter slope), distributed according to 

Greenwood’s formula [10]. The temporal envelope was 

extracted from each frequency band by half-wave 

rectification and low-pass filtering (160 Hz envelope filter). 

The envelope of each band was used to modulate a 

wideband noise, which was then spectrally limited by the 

same band-pass filter used for frequency analysis. Finally, 

the modulated carriers of each band were summed and the 

overall level was adjusted to be the same RMS level as the 

original speech. 

2.4 Implementation framework of spectral conversion 

algorithm with CI simulation  

Figure 1 illustrates the GMM-based spectral conversion 

algorithm used with the CI simulation. The major three 

components of the model (i.e., GMM-based spectral 

conversion, speech analysis/synthesis and CI simulation) 

are detailed in Sections 2.1 - 2.3.  

Figure 1: Implementation framework of GMM-based 

spectral conversion for spectrally degraded speech. 
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The spectral conversion algorithm was tested using IEEE 

sentences [11] recorded with one male (M1) and one 

female (F1) talker. The training dataset included 100 

sentences randomly selected from the database, which 

resulted in over 60,000 Mel-scaled 25th order LSF feature 

vectors to train the GMM. To reduce computational 

complexity, only diagonal spectral conversion was tested. 

The testing dataset included the entire database.  

4. RESULTS AND DISCUSSION 

4.1. Objective test 

The number of GMM components is an important design 

factor to consider. The degree of spectral conversion was 

calculated according to the average MFCC distortion 

between the converted speech and target speech in the 

training set, which was then normalized by the acoustic 

distortion between source speech and target speech. As 

shown in Figure 2, acoustic distortion decreases with 

increasing GMM components. However, acoustic distortion 

only marginally decreases for GMM components 

numbering more than 16, saturating at -4dB, implying that 

relatively few GMM components are needed for spectral 

conversion. Hence, in the present study, the number of 

GMM components was limited to 64.  
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Figure 2: Normalized acoustic distortion between 

converted speech and target speech as a function of the 

number of GMM components. 

A typical spectral envelope conversion is shown in 

Figure 3. The target envelope is an approximation due to 

the possible errors in dynamic time warping and statistical 

modeling of the source vectors. The spectral conversion is 

shown to transform the formant position/bandwidth, 

spectral tilt and energy distribution of the source spectrum 

toward that of the target.  

Variation in spectral envelope between talkers is 

thought to relate to vocal production anatomy.  Vocal Tract 

Length (VTL) is a primary cue for talker classification 

because it provides strong acoustic correlates to talker 

gender and talker identity [9]. In order to compare the  
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Figure 3. Spectral envelope conversion (64 GMM 

components with diagonal conversion). Dash-dotted line: 

source envelope. Solid line: approximated target envelope. 

Dashed line: converted envelope. 

degree of spectral conversion, the VTLs of talkers M1 and 

F1 were compared to spectrally converted VTLs. VTLs 

were estimated from formant frequency measurements for 

the three / /s in the sentence: “It’s easy to tell the depth of 

the well.” As shown in Table 1, the GMM-based spectral 

conversion effectively transformed the VTL of the source 

talker toward that of the target talker. 

Table 1: Estimated VTLs for source and target talkers. 

F1 M1 F1  M1 M1  F1 

VTL (cm) 14.75 16.43 15.14 15.51

The degree of spectral conversion shown in Figure 3 

and Table 1 were calculated using the speech tokens 

without spectral degradation. To see the degree of 

conversion for spectrally-degraded speech (as is typically 

experienced by CI users), the GMM-based algorithm was 

tested using the CI simulation with 4–16 spectral channels. 

Figure 4 shows the acoustic distortion between converted 

speech and target speech (normalized to the acoustic 

distortion between source and target talkers under original 

speech condition), as a function of the number of spectral 

channels. Talker distortion decreased similarly (-

0.42dB/channel) with or without spectral conversion, as the 

number of spectral channels was reduced. Talker distortion 

was fairly uniformly reduced with an average of –2.73dB 

across all spectral resolution condition and is significant 

(paired t-test: p< 10-5) with conversion algorithm.  

4.2. Formal listening test with CI users 

The GMM-based spectral conversion algorithm was also 

assessed in 5 CI patients. IEEE sentence recognition in 

quiet was measured for 4 talker conditions: M1, F1, 

M1 F1 and F1 M1. Sentence recognition was measured 

in free field using subjects’ clinically assigned speech 

processors. Overall, talker preference significantly affected  
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Figure 4: Normalized talker distortion as a function of 

number of channels. Solid line: without spectral 

conversion. Dotted line: with spectral conversion. 

performance (paired t-test: p=0.01); however, some 

performed better with M1, others with F1. Figure 5 shows 

the net perception rate change with better-understood/less-

understood talker as the spectral conversion target. 
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Figure 5: Perception rate change with spectral conversion. 

Black bar: better-understood talker is the target. White bar: 

less-understood talker is the target. 

It is observed that large increase and decrease of 

performance occurred in the subjects S3 and S5, implying 

that these two subjects were more susceptible to multi-

talker variability than S1 and S2. Statistical analysis 

revealed that although performance was not significantly 

decreased when less-understood talker was the target due to 

S4, recognition performance was significantly improved 

when better-understood talker was the target (p=0.004). 

However, it is noted that subject S4 had increased 

performance in both directions of conversion. For this 

individual, spectral conversion had resulted in creating an 

optimal speech pattern somewhere between better-

understood talker and less-understood talker. This 

paradoxical result for S4 may be an artifact of the low 

number of talkers used in the experiment.  

5. CONCLUSIONS 

This paper presented and evaluated a GMM-based spectral 

conversion algorithm under spectrally degraded speech, 

motivated by CI users’ needs. In a model of CI speech 

processing (4- to 16-channel noise vocoder), talker 

distortion was significantly reduced with the algorithm, 

using relatively few GMM components (64); VTLs for 

spectrally converted talkers approached those of the target 

talkers. Sentence recognition performance was significantly 

improved for the less-understood talker with the spectral 

conversion algorithm. These results suggest GMM-based 

spectral conversion may enhance CI users’ multi-talker 

speech recognition by transforming the acoustic 

characteristics of multiple talkers toward the optimal 

spectral representation for individual CI patients.  
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