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ABSTRACT

In this paper we use information theory to quantify the in-
formation in the output spike trains of modeled cochlear nu-
cleus onset neurons. Onset neurons are known for their pre-
cise temporal processing, and they code the periodicity of
voiced speech with high fidelity. We conclude that the max-
imum information transmission rate for a single neuron is
close to 1000 bits/s, which corresponds to 3.26 bits/spike.
For quasi-periodic signals like voiced speech, the transmit-
ted information saturates with word duration, with 90% of
the information being transmitted within 73 ms. Informa-
tion theory also shows that the maximum temporal resolu-
tion of onset neurons is approximately 0.1 ms.

1. INTRODUCTION

Our auditory system performs a spectral decomposition of
acoustic stimuli, and at the same term preserves temporal
information. We are interested in how speech signals are en-
coded into spike trains by the neurons in the auditory path-
way. What is the temporal resolution of this neural coding?
How is the encoding affected by noise? And furthermore,
how robust do neurons encode different frequencies in the
speech signal? In this paper we use an auditory model and
apply information theory to find answers to these questions
and to evaluate the robustness of speech coding for so-called
onset neurons (ON) located in cochlear nucleus, the first
neuronal processing stage after the inner ear. ON have very
specialized membrane properties, and respond with great
precision to signal onsets. ON also extract the periodicity
of voiced speech with high fidelity [1]. Information theory
[2, 3, 4] provides us with quantitative tools to assess the in-
formation content of ON spike trains without making any
assumption on the coding strategy.

2. MODELING

In this section we give a very brief overview of the model
we use for the experiments.

2.1. Inner ear model: Coding of sound signals into trains
of nerve action potentials

The model of the peripheral hearing system consists of a
simplified middle ear model, a model of inner ear hydrody-
namics followed by a compression stage, and sensory cells
(see Fig.1). The hydrodynamics model effectively acts as
a filter bank that spectrally decomposes acoustic stimuli.
The compression stage models the so-called “cochlear am-
plifier”, and gives the model up to fourth-root compression
of the dynamic range and the high spectral resolution found
in humans. The compression is crucial for sound coding in
the sensory cell, the inner-hair cell, since it has a dynamic
range of only 40 dB. The auditory nerve fibers (ANF) in-
nervate the sensory cells and encode the stimuli in nerve
action potentials or spike trains. The generation of a spike
is modeled as a stochastic process. We tuned the model to
reproduce recent psychoacoustic measures of frequency se-
lectivity and compression [5].
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Fig. 1. Schematics of the auditory model. The model has
100 frequency channels. Each channel is coded by 60 au-
ditory nerve fibers, which connect to one onset neuron per
channel.

2.2. Model of onset neurons

We modeled Type II onset neurons [6] located in the brain-
stem (ventral cochlear nucleus) and connected them to 60
ANFs from our inner ear model (compare Fig. 1). Roth-
man and Manis [6] characterized the ion channels of the
onset neurons. We used a single-compartmental model in-
cluding five major Hodgkin-Huxley-type ion channels. We
corrected conductance and time-constants to a body temper-
ature of 38Æ and solved the differential equations in the time
domain.
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3. ALGORITHM FOR THE INFORMATION
CALCULATION

We implemented an algorithm based on information theory
for calculating information carried by the output spike trains
of ON [3]. Let � denote the input stimulus and � the re-
sponse of the ON; given the output spike trains of the ON,
the information ������ they provide about the input stim-
ulus (mutual- or transmitted information) is given by

������ � ����������� (1)

where the (overall) entropy���� of a discrete random vari-
able � is defined by

���� � �
�

�

���� ���
�
���� (2)

and the conditional entropy ��� �� � of � given � by

��� �� � � �
�

�

������� �� � �� (3)

We recorded the timing of individual spikes with a sampling
function 	 ��� to represent the output spike trains. Accord-
ing to the data processing inequality, we have ������ �
��	 ������. We repeatedly presented the same stimulus to
our auditory model to build up a binary code book, where
each row is a bit sequence that represents the output spike
train in response to one repetition. We transformed the bi-
nary code book with different word length (
�) into deci-
mal words. The overall entropy is calculated from the whole
decimal code book. The conditional entropy is calculated
only from the words that are synchronized in time. In or-
der to approximate������ for infinite number of trials, we
first use a small fraction of the total trials, and then gradually
increased the fraction [3]. In this way we were able to ex-
trapolate ������ from a finite number of trials. The trans-
mitted entropy, ������, is the difference between overall-
and conditional entropy (Equation 1).

3.1. Results

We present the utterance /ei/ with a sound pressure level
of 70 dB(A) (female speaker, ISOLET fcmc0-A1) as input
stimulus for all our figures. ISOLET recordings are band-
limited to 8 kHz. The response of the ANF and ON along
the whole length of the inner ear are plotted in Figure 2.
Notice that the inner ear provides a spectral decomposi-
tion with approximately logarithmic resolution. ANF spike
trains code both spectral- and temporal features of sounds.
Frequency regions with high energy – like the formants –
are coded with higher spike rates. The temporal fine struc-
ture is preserved in the precise spike timing. The increasing
delay of the neuronal responses towards lower frequencies

is due to propagation of the traveling-wave from the base
to the apex of the inner ear. ON enhance the periodicity of
voiced speech; they extract the pitch frequency very reliably
in the CF region from 200 Hz - 2.5 kHz. In our model, they
hardly fire for CFs above 2.5 kHz. In this frequency region
the phase-locking of ANFs is lost and our model predicts
ON to fail. We will discuss the reasons for this failure in a
future paper and propose a modification in the spike gener-
ation of ANFs to solve this problem.
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Fig. 2. Coding of speech (utterance /ei/, female speaker,
70 dB(A)) into trains of nerve-action potentials of the audi-
tory nerve (upper panel) and onset neurons (lower panel).

3.1.1. Information content in spike trains

Figure 3a plots entropy and conditional entropy of ON spike
trains for the frequency channel number 47 with a character-
istic frequency of 2 kHz. The conditional entropy,������,
increases linearly with word duration, as expected. To our
surprise – and in contrast to other publications which as-
sume constant entropy rates [3, 4] – we found an initial
steep increase of the entropy ����, which levels off for
longer word durations. As a consequence, the information
rate decreases with increasing word duration. We can un-
derstand this behaviour both from a theoretical and from an
intuitive point of view. Our input signal is a vowel which
is a quasi-periodic signal, repeating itself – at least approx-
imately – every pitch period. When a pitch period is coded
with sufficient precision, no further information is transmit-
ted. Intuitively, we know that we can classify vowels inde-
pendent of how long they are pronounced – if their duration
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just exceeds a minimum length. For a quantitative analysis,
we fit the conditional entropy ������ as a linear function
of word duration � � �� � �� (�� is the word length in
bits and �� the temporal quantization) (Fig. 4):

������ � � �� (4)

where � denotes the rate of conditional entropy in bits/s. We
can also derive Equation 4 analytically. In ON spike trains,
for a given stimulus the uncertainty lies mostly in the jitter
of the spiking time. The conditional entropy can be seen as
a sequence of variables which are almost independent and
identical. According to information theory, if variables ��,
��,. . .�� are independent and identical, their joint entropy
can be calculated: ����� 	 	 	 ��� � 
 � �����. The de-
pendence of the overall entropy on word duration is slightly
more complicated. Whereas other investigations also as-
sume a linear increase of the overall entropy with ��, we
see that conditional- and overall entropy grow with the same
slope for long word durations (see Fig. 3a). This observation
is supported by our notion that the transmitted information
does not increase for long word duration due to the peri-
odicity of voiced speech. If we make the assumption that
the initial increase of the overall entropy is exponential, it is
described by:

���� � � �� � � � �
������� � � (5)

� � �� � �� stands for the word duration. The time
constant � and the distance � between ���� and ������
at infinite word duration were fitted with good agreement
(Fig. 3a).

The transmitted information � can then be determined
using Equation 1:

� � �� � � �
������� (6)

We can see the saturation effect only for word durations
larger than about 5–10 ms; for shorter durations the infor-
mation rate of the conditional entropy is approximately con-
stant. As for larger durations (equal to longer wordlenghts)
the number of trials for reliable estimations of the word
probabilities increase exponentially, experimental studies are
usually restricted to short durations because of limited record-
ing times. In our computational model we can afford a large
number of trials (6000) so that we were able to extend the
wordlength to a maximum of 18 bits. Still, to estimate word
durations up to 64 ms, we had to use a coarse temporal res-
olution of 4 ms. For this case, we clearly see the transmitted
information saturating (� � ��ms) with 90% of the infor-
mation transmitted within the initial 73 ms (derived from fit
function from ������ with 4 ms resolution).

3.1.2. Temporal resolution

We determine the temporal resolution of ON by down-sampling
spike times to multiples of the sampling frequency. Of course
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Fig. 3. Dependence of entropy, conditional entropy (left
panel) and transmitted information (right panel) on word
duration for the ���� frequency channel (CF: 2 kHz, 6000
stimulus repetitions). With a coarser temporal resolution
(4 ms), less information is transmitted but we cover longer
word durations.

we have to compensate increasing sampling intervals by de-
creasing word lengths (in bit) to keep the absolute word
duration (in ms) constant. When we calculate transmitted
information and refine sampling intervals, transmitted in-
formation increases until the temporal resolution of ON is
reached. Figure 4 indicates that the transmitted information
rate (constant word duration of 2 ms) saturates at a value
of 700 bits/s if the temporal resolution is finer than approxi-
mately 0.1 ms; 90% of the information is covered for a reso-
lution of 0.25 ms. This value highlights the extreme tempo-
ral precision of ON – one of the purposes of these neurons
is the extraction of temporal information for sound localiza-
tion.
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Fig. 4. Dependence of transmitted information on temporal
resolution (���� frequency channel, 2 kHz CF).

3.1.3. Information distribution over frequency channels

We investigated how information is distributed over frequency
and how robust ON code speech in noisy conditions. In
clean conditions, the initial information rate (Fig. 5, 2 ms
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word duration, 0.125 ms temporal resolution, information
calculated over the first 50 ms of the signal) reaches its high-
est values in the regions of the speech formants, where ON
spike most frequently. The absolute maximum (964 bits/s)
is at low frequencies, where the spikes are precisely phase-
locked to the pitch frequency of the speaker. Still, also in the
2 kHz region, the information rate reaches comparable val-
ues, which indicates that the temporal precision of spikes
is maintained: ON still lock reliably on each pitch period
of voiced speech. The absence of information coded in the
frequency range above 3.5 kHz is obvious, as in our model
ON do not fire in this frequency region.

With added pink noise we evaluated the robustness of
speech coded in ON spike trains. As we only want to con-
sider the information inherent in speech and not in noise,
we added randomly regenerated noise for every trial. For
a SNR of 0 dB, pink noise corrupted about 84% of the in-
formation at the 286 Hz location and 90% at the 2.5 kHz
location.

120406080100

0

200

400

600

800

1000

channel number

in
fo

rm
at

io
n 

ra
te

s 
(b

its
/s

)

 30 dB
 10 dB
   0 dB
-10 dB
-30 dB

105210.50.20.1
characteristic frequency (kHz)

SNR

Fig. 5. Information carried across frequency channels for
signals with different SNR. The signal is the vowel /ei/,
70 dB(A), added with different levels of pink noise. Word
duration is 2 ms with 0.125 ms resolution.

4. SUMMARY AND CONCLUSION

Onset neurons located in the cochlear nucleus are known
for their distinct temporal processing capabilities. In this
paper we analyzed their performance in the sense of infor-
mation transmission. Our results show that the temporal res-
olution of neural coding was approximately 0.1 ms, and the
maximum initial information transmission rate was close to
1000 bits/s, which corresponds to a very high information
of 3.26 bits/spike. At a resolution of 1 ms, we lose half of
the information carried by the spike trains compared to the

finest temporal resolution. We also investigated the robust-
ness of neuronal coding to noise. For pink noise with 0 dB
SNR, the information content of voiced speech decreased by
a factor of 8 compared to clean speech. In contrast to pre-
vious investigations, which were restricted to time limited
neural recordings, we found that the information rate is not
constant for increasing word lengths. Instead, transmitted
information saturates, with 90% of the information trans-
mitted within the first 73 ms. The time constant depends on
signal level; for louder signals the information is transmitted
faster (data not shown). Information theory also allows us to
quantify information loss in noisy environments. Our model
predicts that in pink noise with the same A-weighted level
as speech, corrupts up to 90% of the information. Techni-
cal applications like automatic speech recognition rely on
signal representations with a very coarse temporal resolu-
tion (usually 10 ms). If we extrapolate our data (Fig. 4), we
expect that this process destroys at least 90% of the informa-
tion coded by the human auditory system. We therefore sus-
pect that fine-grained temporal information might improve
ASR systems especially in noisy conditions.
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