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ABSTRACT 

This paper presents a method of audio signal separation from 
stereo mixtures using binary masking in time-frequency (TF) 
domain based on the spatial location of the audio sources. The TF 
representation of audio signal is obtained by Hilbert spectrum 
(HS). The Hilbert transformation together with empirical mode 
decomposition (EMD) produces HS which is a fine-resolution TF 
representation of any nonlinear and non-stationary signal. The 
sources are localized in the space of time and intensity 
differences between two microphones’ signals. The separation is 
performed by masking the target signal in TF domain considering 
that the sources are disjoint orthogonal. The experimental results 
of the proposed method show a noticeable improvement of 
separation efficiency.     

1. INTRODUCTION 

The multi-source audio environment is a crucial situation for 
humanoid robotics to segregate and recognize a particular sound. 
Such acoustical situation requires the technique to separate the 
audio sources from stereo mixtures as implemented in [1, 2, 3, 4]. 
When the sources are located at different spatial locations, the 
time difference (TD) and intensity difference (ID) are introduced 
between the mixed signals recorded by two microphones. The 
separation is performed by time-frequency (TF) masking based 
on the TD-ID space localization of the sources [3, 4]. It is 
assumed that the sources are disjoint orthogonal i.e. only one 
source is active at any point in TF space. The short-time Fourier 
transform (STFT) is employed in TF representation of the 
mixture signals. The STFT based TF representation includes a 
remarkable amount of cross-spectral energy due to the harmonic 
assumption and window overlapping. The both time and 
frequency resolution can not be extended independently. Those 
two limitations of STFT based TF representation degrades the 
disjoint orthogonality of the audio sources and hence the 
separation efficiency by using masking method in TF domain. 
The separation efficiency can be improved by maximizing the 
resolution and minimizing the cross-spectral energy terms in TF 
space.  

This paper presents a technique to the individual audio sources 
from stereo mixtures based on their spatial locations. The HS 
which does not include noticeable amount of cross-spectral 
energy terms is employed here in TF representation. The 

empirical mode decomposition (EMD), a new technique for 
nonlinear and non-stationary time series analysis [5] and Hilbert 
transformation are employed together to derive HS. The EMD 
decomposes the mixture signal as a collection of some oscillatory 
basis components termed as intrinsic mode functions (IMFs) 
containing some basic properties [5, 6]. It can also be considered 
as dyadic filter-bank as being proved by the analysis of white 
noise [6, 7]. A modified version of the original EMD method is 
introduced here. Instantaneous frequency of each real valued IMF 
is calculated by applying Hilbert transform. The Hilbert Spectrum 
(HS) of the mixture signals are constructed by properly arranging 
the frequency responses of the individual IMF along time and 
frequency axes. Based on the TD and ID between two mixtures, 
the TF spaces (HSs of two mixtures) are clustered to localize the 
audio sources in TD-ID space. The TF space of each source is 
segregated by binary masking method [4], and the time domain 
signals are recostructed by applying the inverse transformations. 
The HS has better TF resolution as well as less cross-spectral 
energy and hence more suitable for disjoint orthogonality 
assumption of audio sources.  

Regarding the arrangement of this paper, the basics of EMD 
method and the Hilbert spectrum are described in Scetion 2, 
sources localization and separation methods are illustrated in 
Section 3 and 4 repectively. The measure of  disjoint 
orthogonality is described in Section 5. The experimental results 
are presented in Section 6 and finally the conclutions are 
included in Section 7. 

2. THE EMD AND HILBERT SPECTRUM 

The empirical mode decomposition (EMD) technique 
decomposes any signal s(t) into a set of band-limited functions 
Cm(t) called intrinsic mode functions (IMFs). Each IMF should 
satisfy two basic conditions: (i) in the whole data set, the number 
of extrema and the number of zero crossing must be the same or 
differ at most by one, (ii) the mean value of the envelope defined 
by the local maxima and the envelope defined by the local 
minima is always zero. There exist many approaches of 
computing EMD [6]. The following algorithm is adopted here to 
decompose the signal s(t) into a set of IMF components. 

a) Initialize the residual r0(t)=s(t) and index of IMF m=1 
b) Compute mth IMF 
c) (i) set g0=rm-1 and i=1
    (ii) Identify the extrema (minima and maxima) of gi-1(t)
    (iii) Compute upper and lower envelopes ui-1(t) and li-1(t)
  (iv) Find mean envelope µi-1(t)=[ui-1(t)+li-1(t)]/2 
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  (v) Update gi(t)=gi-1(t)-µi-1(t) and i=i+1 
  (vi) Repeat steps (ii)-(v) until gi(t) being an IMF. If so, the   
         mth IMF Cm(t)=gi(t) 
d) Update residual rm(t)=rm-1(t)-Cm(t) 
e) Repeat steps (b) to (c) with the index of IMF m=m+1 

At the end of the decomposition the signal s(t) is represented as:  

∑
=

+=
M

m
Mm rCts

1

)(          (1) 

where M is the number of IMF components and rM is the final 
residue. The rM monotonously converges to a constant or takes a 
function with only one maxima and minima such that no more 
IMF can be derived. The mixed (speech and flute sound) audio 
signal and the decomposed IMF components are shown in Fig.1.  

Fig. 1. The EMD of an audio mixture (speech and flute sound) showing 
first three IMFs out of 15 

It is noticed that EMD yields a small number of modes (IMFs) 
that completely fall inside the frequency range of the original 
data. During the sifting process most of IMFs include signals at 
frequencies that cannot be associated with the data. To eliminate 
such unwanted signals, a band-pass filtering method is proposed 
to be included in the original EMD algorithm.  

This attempt ensures to run every IMF inside the given 
frequency band. The proposed modification also increases the 
number of IMF components that improves the frequency 
resolution of derived HS. The analyzing signal s(t) is passed 
through a zero phase band-pass filter (BPF). The same filter is 
included in step (vi) of the original algorithm. The procedure is as 
follows: first generate the IMF Cm(t), filter it to yield the filtered 
IMF )(ˆ tCm

 and compute the residue )(ˆ)()(ˆ 1 tCtrtr mmm −= −
to 

generate )(ˆ
1 tCm+

. After completing the decomposition, the 

modified EMD can be represented by the same way as in Eq. (1). 
Experimentally it is found that the modified EMD generates 25 
IMFs whereas, original one produces 15 IMFs from the same 
signal of Fig. 1.

2.1. Instantaneous Frequency 

Instantaneous frequency (IF) represents signal’s frequency at 
an instance, and is defined as the rate of change of the phase of 
the “analytic” version of the signal with respect to time. Every 
IMF is a real valued signal. The discrete Hilbert transform (HT) 
denoted by Hd[.] is used to compute the analytic signal for an 
IMF. The HT provides a phase-shift of ±π/2 to all frequency 
components, whilst leaving the magnitudes unchanged [5].Then 

the analytic version of the mth IMF )(ˆ tCm
is defined as: 

)()()](ˆ[)(ˆ)( tj
mmdmm
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where am(t) and θm(t) are instantaneous amplitude and phase 
respectively of the mth IMF. The analytic signal is advantageous 
in determining the instantaneous quantities such as energy, phase 
and frequency. The IF of mth IMF is then given as the derivative 

of the phase θm(t):
dt

td
t m

m
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ω =   where  )(
~

tmθ  represents the 

unwrapped version of instantaneous phase θm(t). The median 
smoothing is applied to reduce the discontinuities of the IF 
obtained by discrete time derivative. 

2.2. Hilbert Spectrum 

Hilbert Spectrum represents the distribution of the signal 
energy as a function of time and frequency. It is also designated 
as Hilbert amplitude spectrum H(f,t) or simply Hilbert spectrum 
(HS). This process first normalizes all IF vectors between 0 to 
0.5. Each IF vector ωm(t) is multiplied by the scaling factor 
η=0.5/(IFmax-IFmin), where IFmax=Max(ω1,ω1,…,ωM) and 
IFmin=Min(ω1, ω1,…, ωM).  The bin spacing of the HS is 0.5/B, 
where B is the number of desired frequency bins. The overall HS 
is expressed as the superposition of the HS of individual IMF 
defined as: ∑= ),(),( tfHtfH m

 for m=1, 2,……,M [6]. Hence, 

each element H(f,t) of the overall HS is defined as the weighted 
sum of the instantaneous amplitudes of all the IMFs at fth

frequency bin,    
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where the weight factor )()( tw f
m

 takes 1 if η×ωm(t) falls within fth

band, otherwise is 0. After computing the elements over the 
frequency bins, H represents the instantaneous signal spectrum in 
TF space as a 2D table.       

It is noted that the time resolution of H is equal to the 
sampling rate and the frequency resolution can be chosen up to 
Nyquest limit. Fig. 2 represents the Hilbert spectrum of the audio 
signal shown in Fig. 1 using 256 frequency bins with 16kHz 
sapling rate.  

Fig. 2. Hilbert spectrum of audio mixture with 256 frequency bins 

3. SOURCE LOCALIZATION 

The audio signals placed at different azimuth (0o to 180o) 
locations are recorded by two omni-directional homogeneous 
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microphones. There is a one-to-one mapping between the 
azimuth location and a region in TD-ID space, and hence the 
sources are localized in TD-ID space. The TD and ID are 
computed from the relative phase and energy differences of the 
TF spaces of two mixtures. If HL(f,t) and HR(f,t)  are the Hilbert 
spectrum of the mixtures xl(t) and xr(t) respectively, the TD and 
ID can easily be computed as [1, 4]: 
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where ),(
~

tfLφ and ),(
~

tfRφ are the unwrapped phase matrices 

corresponding to HL(f,t) and HR(f,t) respectively. The differences 
between the unwrapped phase terms are required to remain within 
(-π,π). The intensity (energy) and phase in TF space are 
calculated by averaging within the time frame of length 1ms with 
50% overlapping. It improves the source localization 
performance.  

Fig. 3. TD-ID Space Localization of three sources 

The values of TD and ID computed by Eq. (4) are quantized 
into discrete levels (50 levels). Then the histogram ψ(TD, ID) is 
constructed by mapping each TF point into quantized TD-ID 
space. In ψ(TD, ID), it is observed that each source is properly 
localized at specific region within TD-ID space. Fig. 3 shows the 
localization of three sources (two speech signals and flute sound 
located at 60°, 90o and 120° azimuths respectively). The three 
peaks (with some degree of spreading) correspond to distinct 
active sources. The histogram is weighted by the energy function 
in the TF space of the mixture. Some further processing is 
necessary to smooth the histogram such that its peaks are in one-
to-one correspondence with TD and ID parameters of each source. 

4. SOURCE SEPARATION 

The individual sources placed at different azimuth locations are 
in one-to-one relation with the unique regions in the histogram 
ψ(TD, ID). Such a mapping allows to construct the TF mask 
corresponding to each region and it is used to mask HL or HR to 
produce the TF representation of the component source. If δn and 
κn are the set of TD and ID respectively representing the peak 
region of the nth source in ψ(TD, ID), its TF mask can be 
computed as: 

tf
otherwise

tfIDandtfTD
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The binary mask nullifies TF points of interfering sources. 
Then the Hilbert spectrum of the nth source can be computed 

as: ),(),(),( )()( tfHtfMtfH L
nn = . During the Hilbert transform the 

real part of the signal remains unchanged. The time domain signal 
of nth source is reconstructed by filtering out the imaginary part 
from the HS and summing over frequency bins as [8]:  

∑ ⋅=
f

nn tftfHts )],(cos[),()( )()( φ       (6) 

where φ(f,t) is the phase matrix of HL (or HR). The phase matrix is 
saved during the construction of Hilbert spectrum to be used in 
re-synthesis. 

5. DISJOINT ORTHOGONALITY IN TF SPACE 

The simple definition of disjoint orthogonality of audio sources 
says that not more than one source is active at the same time and 
with same frequency. If Y1(f,t) and Y2(f,t) are the TF 
representation of the signals y1(t) and y2(t), the disjoint 
orthogonality assumption can be stated as: 

tftfYtfY ,;0),(),( 21 ∀= . In order to better measure a signal 

at a particular point (f,t), it is natural to desire that ∆t and ∆f be as 
narrow as possible. In STFT based TF representation ∆t and ∆f

has to satisfy an uncertainty inequality 5.0≥∆∆ ft
which is the 

trade-off of the selection of time-frequency resolution. The 
Hilbert spectrum has better time-frequency resolution and 
improved disjoint orthogonality (DO) of audio signals in TF 
space.  

The signal to interference ratio (SIR) is used as the basis to 
measure the DO. The SIR for the nth source signal is, 
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where N is the number of audio signal considered to be disjoint 
orthogonal, Xn(f,t) is the TF representation (using STFT  or HS) 
of the nth signal. The dimension in TF space using STFT and HS 
may be different and hence the DO is defined as the percentage 
over the whole TF space. It is achieved by dividing the SIRn with 
the total number of TF points used to calculate SIRn. Finally the 
average disjoint orthogonality (ADO) is the average of all SIRs of 
individual signal as:

∑
=

=
N

n
nSIR

N
ADO

1

1 .The same process is applied 

to measure ADO (between 0 to 1) for STFT and HS based TF 
representation of the audio signals. Some experimental results are 
presented to compare STFT and Hilbert spectrum as the TF
representation tools of audio signals in terms of ADO. 

6. EXPERIMENTAL RESULTS 

The separation efficiency of the proposed algorithm is 
evaluated by separating the signals from stereo mixtures of three 
audio sources:   speech of two male speakers (sm1 and sm2) and 
speech of a female (sf1). The recording is performed in an 
anechoic room. The spacing between two microphones is 10cm 
placed at 1.5m distance from each source. The sources are placed 
at different azimuth locations (0o to180o). The sampling rate of all 
the recording is set to 16kHz with 16-bit amplitude resolution.       

Three binaural mixtures (m1, m2 and m3) are produced by 
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arranging the sources at different azimuth locations as: 
m1{sm1(40o), sm2(80o), sf1(110o)}, m2{sm1(80o), sm2(130o), 
sf1(120o)}, m3{sm1(140o), sm2(50o), sf1(120o)}. The average 
value of short time energy ratio between original and separated 
signal is proposed as the criterion to measure the separation 
efficiency. It is termed as OSSR (original to separated signal 
ratio) and defined as: 
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where soriginal and sseparated are the original and separated signal 
respectively, w is frame length (10 ms) and T is the data length. If 
the two signals are same, OSSR=0 and any other value is a 
measure of their dissimilarity. Smaller value of OSSR indicates 
better separation. Table 1 shows the average OSSR of each signal 
for every mixture. It is observed that the separation efficiency is 
degraded when the apart angle between the sources becomes 
smaller. Also the separation efficiency is compared for three 
types of TF representations: HS using basic EMD (HSb), HS 
using modified EMD (HSm) and STFT. It is noticed that the HS 
based TF representation improves the separation performance 
whereas, in most of the cases HSm performs better than HSb.                

Table 1: The experimental results of proposed algorithm  

Mixtures  TF OSSR of 
sm1 

OSSR of 
sm2 

OSSR of 
sf1 

HSb 0.0512 0.0573 0.0664 
HSm 0.0498 0.0567 0.0621 m1 

STFT 0.0761 0.0781 0.0812 
HSb 0.0611 0.0972 0.0893 
HSm 0.0584 0.0873 0.0891 m2 

STFT 0.0874 0.1032 0.1095 
HSb 0.0815 0.0526 0.0781 
HSm 0.0809 0.0521 0.0779 m3 

STFT 0.1107 0.0.886 0.0986 

The separation efficiency depends only on the apart angle 
between the sources locations but not on the signal contents. The 
separation accuracy is better for larger apart angle between the 
sources. 

Fig. 4. ADO of HS and STFT as a function of frequency bins 

Each one of the three audio signals is converted to TF space 
using HS (both HSb and HSm) and STFT separately to produce 
the experimental results of DO. Fig. 4 and 5 show ADO of HS 
and STFT (using Hamming and Hanning window with 60% 
overlapping) as a function of the number of frequency bins and 
window overlapping respectively. In both cases HS offers better 

ADO than STFT. The HS with the modification of the basic 
EMD i.e. HSm improves the disjoint orthogonality of the audio 
sources in TF domain and hence the separation efficiency.   

Fig. 5. ADO of HS and STFT as a function of window overlapping 

7. CONCLUSIONS 

A localization based method of audio source separation from 
stereo mixtures is proposed in this paper. The sources are 
localized in TD-ID space and separation is obtained by binary 
masking in TF domain. It is assumed that the sources are disjoint 
orthogonal in TF domain. The use of HS as the TF representation 
improves the disjoint orthogonality of the sources as well as the 
separation efficiency compared with STFT based method. The 
specialty of HS is that the time resolution can be as precise as the 
sampling period and the frequency resolution depends on the 
choice up to Nyquist frequency. Hence it serves as the potential 
TF representation for the consideration of disjoint orthogonality 
of audio sources. Also the modification of basic EMD method is 
proposed here to enhance the separation performance. The robust 
analysis of disjoint orthogonality of various audio sources and the 
separation of moving sources are the main concern as the future 
extension of this work.       
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