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ABSTRACT

A new two-stage blind source separation (BSS) for convolutive mix-
tures of speech is proposed, in which a Single-Input Multiple-Output
(SIMO)-model-based ICA and a new SIMO-model-based binary mask
processing are combined. SIMO-model-based ICA can separate the
mixed signals, not into monaural source signals but into SIMO-model-
based signals from independent sources as they are at the micro-
phones. Thus, the separated signals of SIMO-model-based ICA can
maintain the spatial qualities of each sound source. Owing to the at-
tractive property, novel SIMO-model-based binary mask processing
can be applied to efficiently remove the residual interference com-
ponents after SIMO-model-based ICA. The experimental results re-
veal that the separation performance can be considerably improved
by using the proposed method compared with the conventional BSS
methods.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate orig-
inal source signals using only the information of the mixed signals
observed in each input channel. Basically BSS is classified into un-
supervised filtering technique, and much attention has been paid to
BSS in many fields of signal processing.

In recent researches of BSS based on independent component
analysis (ICA), various methods have been presented for acoustic-
sound separation [1, 2, 3]. This paper also addresses the BSS prob-
lem under highly reverberant conditions which often arise in many
practical audio applications. The separation performance of the con-
ventional ICA is far from being sufficient in the reverberant case
because too long separation filters is required but the unsupervised
learning of the filter is not so easy. Therefore, one possible improve-
ment is to partly combine ICA with another signal enhancement
technique, but in the conventional ICA, each of the separated out-
puts is a monaural signal, and this leads to the drawback that many
kinds of superior multichannel techniques cannot be applied.

In order to attack the tough problem, we propose a novel two-
stage BSS algorithm which is applicable to an array of directional
microphones. This approach resolves the BSS problem into two
stages: (a) a Single-Input Multiple-Output (SIMO)-model-based ICA
proposed by the authors [4] and (b) new SIMO-model-based binary
mask processing for the SIMO signals obtained from the preceding
SIMO-model-based ICA. Here the term “SIMO” represents the spe-
cific transmission system in which the input is a single source sig-
nal and the outputs are its transmitted signals observed at multiple
microphones. SIMO-model-based ICA can separate the mixed sig-
nals, not into monaural source signals but into SIMO-model-based

signals from independent sources as they are at the microphones.
Thus, the separated signals of SIMO-model-based ICA can maintain
rich spatial qualities of each sound source. After the SIMO-model-
based ICA, the residual components of the interference, which are
often staying in the output of SIMO-model-based ICA as well as the
conventional ICA, can be efficiently removed by the following bi-
nary mask processing. The experimental results reveal the proposed
method’s efficacy in a realistic reverberant condition.

2. MIXING PROCESS AND CONVENTIONAL BSS

2.1. Mixing Process
In this study, the number of microphones is K and the number of
multiple sound sources is L, where we deal with the case of K = L.
In the frequency domain, the observed signals in which multiple
sources are mixed are given by X(f) = A(f)S(f), where X(f)
= [X1(f), · · · , XK(f)]T is the observed signal vector, and S(f) =
[S1(f), · · · , SL(f)]T is the source signal vector. Also, A(f) =
[Akl(f)]kl is the mixing matrix, where [X]ij denotes the matrix
which includes the element X in the i-th row and the j-th column.
The mixing matrix A(f) is complex-valued because we introduce a
model to deal with the room reverberations.

2.2. Conventional ICA-Based BSS

In the frequency-domain ICA (FDICA), first, the short-time analysis
of observed signals is conducted by frame-by-frame discrete Fourier
transform (DFT). By plotting the spectral values in a frequency bin
for each microphone input frame by frame, we consider them as
a time series. Hereafter, we designate the time series as X(f, t)
=[X1(f, t), · · · , XK(f, t)]T.

Next, we perform signal separation using the complex-valued
unmixing matrix, W (f) = [Wlk(f)]lk, so that the L time-series
output Y (f, t)=[Y1(f, t), · · · , YL(f, t)]T becomes mutually inde-
pendent; this procedure can be given as Y (f, t) = W (f)X(f, t).
We perform this procedure with respect to all frequency bins. The
optimal W (f) is obtained by, e.g., the following iterative updating
equation:

W [i+1](f) = η
h
I − ˙

Φ(Y (f, t))Y H(f, t)
¸

t

i
W [i](f)

+ W [i](f), (1)

where I is the identity matrix, 〈·〉t denotes the time-averaging oper-
ator, [i] is used to express the value of the i th step in the iterations,
η is the step-size parameter, and Φ(·) is the appropriate nonlinear
vector function [5]. After the iterations, the source permutation and
the scaling indeterminacy problem can be solved by, e.g., [1, 3].
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Fig. 1. Input and output relations in (a) proposed two-stage BSS
and (b) simple combination of conventional ICA and binary mask
processing. This corresponds to the case of K = L = 2.

2.3. Conventional Binary-Mask-Based BSS

Binary mask processing [6, 7] is one of the alternative approach
which is aimed to solve the BSS problem, but is not based on ICA.
We estimate a binary mask by comparing the amplitudes of the ob-
served signals, and pick up the target sound component which arrives
at the better microphone closer to the target speech. This procedure
is performed in time-frequency regions, and is to pass the specific
regions where target speech is dominant and mask the other regions.
Under the assumption that the l-th sound source is close to the l-th
microphone and L = 2, the l-th separated signal is given by

Ŷl(f, t) = ml(f, t)Xl(f, t), (2)

where ml(f, t) is the binary mask operation which is defined as
ml(f, t) = 1 if Xl(f, t) > Xk(f, t) (k �= l); otherwise ml(f, t) =
0.

This method requires very few computational complexities, and
this property is well applicable to real-time processing. The method,
however, needs a sparseness assumption in the sources’ spectral com-
ponents, i.e., there are no overlaps in time-frequency components of
the sources. Indeed the assumption does not hold in an usual au-
dio application, e.g., a mixture of speech and a common broadband
stationary noise.

3. PROPOSED TWO-STAGE BSS ALGORITHM
3.1. Motivation and Strategy

In the previous research, SIMO-model-based ICA (SIMO-ICA) was
proposed by, e.g., Takatani et al. [4], and they showed that the
SIMO-ICA can separate the mixed signals into SIMO-model-based
signals at the microphone points. This finding has motivated us to
combine the SIMO-ICA and a new binary masking strategy, so called
SIMO-model-based binary masking (SIMO-BM). That is, the mask-
ing function is determined by whole information of the SIMO com-
ponents of all sources obtained from SIMO-ICA. The configuration
of the proposed method is shown in Fig. 1(a). SIMO-BM which
follows SIMO-ICA can remove the residual component of the inter-
ference effectively without adding huge computational complexities.

It is worth mentioning that the novelty of this strategy mainly
lies in the two-stage idea of the unique combination of SIMO-ICA
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Fig. 2. Input and output relations in the proposed FD-SIMO-ICA,
where K = L = 2.

and the SIMO-model-based binary mask. To illustrate the novelty of
the proposed method, we hereinafter compare the proposed combi-
nation with a simple two-stage combination of a conventional monaural-
output ICA and the conventional binary masking (see Fig. 1(b)).

In general, the conventional ICAs can only supply the source
signals Yl(f, t) = Bl(f)Sl(f, t) + El(f, t) (l = 1, · · · , L), where
Bl(f) is an unknown arbitrary distortion filter and El(f, t) is a resid-
ual separation error which is mainly caused by an insufficient con-
vergence in ICA. The residual error El(f, t) should be removed by
binary mask processing in the next post-processing stage. However,
the combination is very problematic and cannot function well be-
cause of the existence of the spectral overlaps in the time-frequency
domain. For instance, if all sources have nonzero spectral compo-
nents (i.e., sparseness assumption does not hold) in the specific fre-
quency subband and these are comparable, the decision in binary
mask processing for Y1(f, t) and Y2(f, t) is vague and the output
results in a ravaged (very distorted) signal. Thus the simple com-
bination of the conventional ICA and binary mask processing is not
valid for solving the BSS problem.

On the other hand, our proposed combination contains the spe-
cial SIMO-ICA in the first stage, where the SIMO-ICA can supply
the specific SIMO signals with respect to each of sources, Akl(f)Sl(f, t),
up to the possible delay of the filters and the residual error. The
obtained SIMO components is very beneficial to the decision of
the masking function. For example, the binary masking between
A11(f)S1(f, t) and A21(f)S1(f, t) is more acoustically reasonable
rather than the conventional combination because the spatial prop-
erties that the separated SIMO component at the specific micro-
phone closer to the target sound still maintains the large gain, are
kept. Thus, after having the SIMO components, we can introduce
the SIMO-BM for the efficient reduction of the remaining error in
ICA, even when the sparseness assumption does not hold.

3.2. Algorithm: SIMO-ICA in the 1st Stage

Time-domain SIMO-ICA [4] has recently been proposed by one of
the authors as a means of obtaining SIMO-model-based signals di-
rectly in the ICA updating. In this paper, we extend the time-domain
SIMO-ICA to frequency-domain SIMO-ICA (FD-SIMO-ICA). FD-
SIMO-ICA is conducted for extracting the SIMO-model-based sig-
nals corresponding to each of sources. The FD-SIMO-ICA consists
of (L− 1) FDICA parts and a fidelity controller, and each ICA runs
in parallel under the fidelity control of the entire separation system
(see Fig. 2). The separated signals of the l-th ICA (l = 1, · · ·L− 1)
in FD-SIMO-ICA are defined by

Y (ICAl)(f , t) = [Y
(ICAl)
k (f , t)]k1 = W (ICAl)(f )X(f , t), (3)

where W (ICAl)(f) = [W
(ICAl)
ij (f)]ij is the separation filter matrix

in the l-th ICA.
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Regarding the fidelity controller, we calculate the following sig-
nal vector Y (ICAL)(f, t), in which the all elements are to be mutu-
ally independent,

Y (ICAL)(f, t) = X(f, t) −
L−1X
l=1

Y (ICAl)(f, t). (4)

Hereafter, we regard Y (ICAL)(f, t) as an output of a virtual “L-
th” ICA. The reason we use the word “virtual” here is that the L-th
ICA does not have own separation filters unlike the other ICAs, and
Y (ICAL)(f, t) is subject to W (ICAl)(f) (l = 1, · · · , L − 1). By
transposing the second term (−PL−1

l=1 Y (ICAl)(f, t)) in the right-
hand side into the left-hand side, we can show that (4) means a con-
straint to force the sum of all ICAs’ output vectors

PL
l=1 Y (ICAl)(f, t)

to be the sum of all SIMO components [
PL

l=1 Akl(f)Sl(f, t)]k1

(= X(f, t)).
If the independent sound sources are separated by (3), and si-

multaneously the signals obtained by (4) are also mutually indepen-
dent, then the output signals converge on unique solutions, up to the
permutation, as Y (ICAl)(f, t) = diag

ˆ
A(f)P T

l

˜
P lS(f, t), where

P l (l = 1, · · · , L) are exclusively-selected permutation matrices
which satisfy

PL
l=1 P l = [1]ij . Regarding a proof of this, see [4]

with an appropriate modification into the frequency-domain repre-
sentation. Obviously the solutions provide necessary and sufficient
SIMO components, Akl(f)Sl(f, t), for each l-th source. Thus, the
separated signals of SIMO-ICA can maintain the spatial qualities of
each sound source. For example in the case of L = K = 2, one
possibility is given byˆ

Y
(ICA1)
1 (f, t), Y

(ICA1)
2 (f, t)

˜T

=
ˆ
A11(f)S1(f, t), A22(f)S2(f, t)

˜T
, (5)ˆ

Y
(ICA2)
1 (f, t), Y

(ICA2)
2 (f, t)

˜T

=
ˆ
A12(f)S2(f, t), A21(f)S1(f, t)

˜T
, (6)

where P 1 = I and P 2 = [1]ij − I .
In order to obtain (5) and (6), the natural gradient of Kullback-

Leibler divergence of (4) with respect to W (ICAl)(f) should be
added to the existing nonholonomic iterative learning rule [1] of the
separation filter in the l-th ICA (l = 1, · · · , L − 1). The new itera-
tive algorithm of the l-th ICA part (l = 1, · · · , L−1) in FD-SIMO-
ICA is given as

W
[j+1]

(ICAl)(f)

= W
[j ]

(ICAl)(f) − α

"(
off-diag

D
Φ

`
Y

[j]

(ICAl)(f, t)
´

Y
[j]

(ICAl)(f, t)H
E

t

)
· W

[j ]

(ICAl)(f)

−
(

off-diag
D
Φ

`
X(f, t) −

L−1X
l=1

Y
[j]

(ICAl)(f, t)
´

·
“

X(f, t)−
L−1X
l=1

Y
[j]

(ICAl)(f, t)
”HE

t

)

·
“

I −
L−1X
l=1

W
[j]

(ICAl)(f)
”#

, (7)

where α is the step-size parameter, and we define the nonlinear vec-
tor function Φ(·) as [tanh(|Yl(f, t)|)ej·arg(Yl(f,t))]l1 [5]. Also, the
initial values of W (ICAl)(f) for all l should be different.
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Fig. 3. Layout of reverberant room used in experiments.

3.3. Algorithm: SIMO-BM in the 2nd Stage

After FD-SIMO-ICA, SIMO-model-based binary masking process-
ing is applied. Here we consider the case of (5) and (6). The resul-
tant output signal corresponding to the source 1 is determined in the
proposed SIMO-BM as follows:

Ŷ1(f, t) = m1(f, t)Y
(ICA1)
1 (f, t), (8)

where m1(f, t) is the SIMO-model-based binary mask operation
which is defined as m1(f, t) = 1 if

Y
(ICA1)
1 (f, t)

> max
ˆ|c1Y

(ICA2)
2 (f, t)|, |c2Y

(ICA2)
1 (f, t)|, |c3Y

(ICA1)
2 (f, t)|˜;

(9)

otherwise m1(f, t) = 0. Here max[·] represents the function to
pick up the maximum value among the arguments, and c1, · · · , c3

are the weight for enhancing the contribution of each SIMO com-
ponent to the masking decision. For example, [c1, c2, c3] = [0, 0, 1]
yields the simple combination of the conventional ICA and the con-
ventional binary mask. Otherwise if we set [c1, c2, c3] = [1, 0, 0],
we can utilize better (acoustically reasonable) SIMO information of
each source as described in Sect. 3.1. If we change another pattern
of ci, we can generate various SIMO-model-based maskings with
different separation and distortion properties.

The resultant output corresponding to the source 2 is given by

Ŷ2(f, t) = m2(f, t)Y
(ICA1)
2 (f, t), (10)

where m2(f, t) is defined as m2(f, t) = 1 if

Y
(ICA1)
2 (f, t)

> max
ˆ|c1Y

(ICA2)
1 (f, t)|, |c2Y

(ICA2)
2 (f, t)|, |c3Y

(ICA1)
1 (f, t)|˜;

(11)

otherwise m2(f, t) = 0. Also the extension to the general case of
L = K > 2 can be easily implemented in the same manner.

4. SOUND SEPARATION EXPERIMENT
4.1. Experimental Conditions
First, to evaluate the feasibility to general hands-free applications,
we carried out sound-separation experiments in a real reverberant
room illustrated in Fig. 3, where two sources and two directional
microphones (stereo-microphone) are set. The reverberation time
in this room is 200 ms. Two speech signals are assumed to arrive
from different directions, θ1 and θ2, where we prepare three kinds
of source direction patterns as follows; (θ1, θ2) = (−40◦, 30◦),
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Fig. 4. (a) Results of NRR under different speaker allocations, and
(b) results of CD for (θ1, θ2) = (−40◦, 30◦).

(−40◦, 10◦), or (−10◦, 10◦). We used the speech signals spoken
by two male and two female speakers as the source samples, and we
generated 12 combinations of speakers. The sampling frequency is
8 kHz and the length of each sound sample is limited to 3 seconds.
The DFT size of W (f) is 1024. We use a null-beamformer-based
initial value [3] which is steered to (−60◦, 60◦).

We basically compare the following methods: (A) the conven-
tional binary-mask-based BSS given in Sect. 2.3, (B) the conven-
tional ICA-based BSS given in Sect. 2.2, where the scaling ambi-
guity can be properly solved by [1], (C) simple combination of the
conventional ICA and binary mask processing, and (D) the proposed
two-stage BSS method.

4.2. Experimental Evaluation on Separation Performance
Noise reduction rate (NRR) [3], defined as the output signal-to-noise
ratio (SNR) in dB minus the input SNR in dB, is used as the objective
indication of separation performance. Figure 4(a) shows the results
of NRR under different speaker allocations. These scores are the av-
erages of 12 speaker combinations. From the results, we can confirm
that the proposed two-stage BSS can improve the separation perfor-
mance regardless the speaker directions, and the proposed BSS out-
performs all of the conventional methods.

To assess the distortion of the separated signals, we measure a
Cepstral Distortion (CD) which indicates the distance between the
spectral envelope of the original source signal and the target com-
ponent in the separated output. The CD cannot take into account
the degree of interference reduction unlike NRR, and thus the CD
and NRR are complementary scores. The FFT-based 10th-order cep-
strum is used, and the CD is decreased as the distortion is reduced.
Figure 4(b) depicts the examples of CD (average of 12 speaker com-
binations) under (θ1, θ2) = (−40◦, 30◦). As can be confirmed,
the CDs of both the conventional ICA and the proposed method are
smaller than those of the binary masking and its simple combination
with ICA. This means that (a) the conventional binary-mask-based
methods involve a heavy distortion due to the improper time vari-
ant masking arising in the non-sparse frequency subband, (b) but the
proposed method cannot be affected by such an improperness.

These results are promising evidences that the proposed combi-
nation of SIMO-ICA and SIMO-BM is well applicable to the low-
distortion sound segregation, e.g., hands-free telecommunication via
mobile phones.

5. SPEECH RECOGNITION EXPERIMENT

Next, to evaluate the applicability to the speech enhancement, we
performed large vocabulary speech recognition experiments utilizing
the proposed BSS as a preprocessing for noise reduction. Regard-
ing the decoder, Julius[8] is used. We use a Phonetic Tied Mixture
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Fig. 5. Result of word accuracy for (θ1, θ2) = (−40◦, 30◦).

(PTM) model trained via 260 speakers selected from JNAS database.
The test sets include 200 sentences.

Figure 5 indicates the results of word recognition performance
(word accuracy) for each methods, where we can see the proposed
method’s superiority. The score of the proposed method with [c1, c2, c3]
= [1, 0, 0.1] is obviously better that those of the binary masking and
its simple combination with ICA, and significantly outperforms the
conventional ICA. Thus the proposed method is potentially bene-
ficial to noise-robust speech recognition as well as the hands-free
telephony.

6. CONCLUSION

We proposed a new BSS framework in which the SIMO-ICA and
a new SIMO-BM are efficiently combined. In order to evaluate its
effectiveness, a separation experiment was carried out under a re-
verberant condition. The experimental results revealed that the SNR
can be considerably improved by using the proposed two-stage BSS
algorithm. In addition, we could find that the proposed method out-
performs the combination of the conventional ICA and binary mask
processing as well as the simple ICA and binary mask processing.
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