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ABSTRACT

This paper describes a method for solving the permutation problem
of frequency-domain blind source separation (BSS). The method an-
alyzes the mixing system information estimated with independent
component analysis (ICA). When we use widely spaced sensors or
increase the sampling rate, spatial aliasing may occur for high fre-
quencies due to the possibility of multiple cycles in the sensor spac-
ing. In such cases, the estimated information would imply multi-
ple possibilities for a source location. This causes some difficulty
when analyzing the information. We propose a new method de-
signed to overcome this difficulty. This method first estimates the
model parameters for the mixing system at low frequencies where
spatial aliasing does not occur, and then refines the estimations by
using data at all frequencies. This refinement leads to precise param-
eter estimation and therefore precise permutation alignment. Exper-
imental results show the effectiveness of the new method.

1. INTRODUCTION

The technique for estimating individual source components from
their mixtures at multiple sensors is known as blind source separa-
tion (BSS) [1]. With acoustical applications of BSS, such as solving
a cocktail party problem, signals are generally mixed in a convolu-
tive manner with reverberations. Let s1, . . . , sN be source signals
and x1, . . . , xM be sensor observations. The convolutive mixture
model is formulated as

xj(t) =

N∑
k=1

∑
l

hjk(l) sk(t − l), j =1, . . . , M, (1)

where t represents time and hjk(l) represents the impulse response
from source k to sensor j. In a practical room situation, impulse re-
sponses hjk(l) can have thousands of taps even with an 8 kHz sam-
pling rate. This makes the convolutive BSS problem very difficult
compared with the BSS of simple instantaneous mixtures.

An efficient and practical approach for such convolutive mix-
tures is frequency-domain BSS [2–9], where we apply a short-time
Fourier transform (STFT) to the sensor observations xj(t). In the
frequency domain, the convolutive model (1) can be approximated
as an instantaneous mixture model at each frequency:

xj(f, t) =

N∑
k=1

hjk(f)sk(f, t), j =1, . . . , M, (2)

where f represents frequency, t is now down-sampled with the dis-
tance of the frame shift, hjk(f) is the frequency response from source
k to sensor j, and sk(f, t) is a frequency-domain representation of a
source signal sk(t).

Independent component analysis (ICA) [10] is a major statistical
tool for BSS. In the frequency-domain approach, ICA is employed in
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Fig. 1. Flow of frequency-domain BSS

each frequency bin with the instantaneous mixture model (2). This
makes the convergence of ICA relatively fast compared with convo-
lutive ICA where the mixture model (1) is explicitly assumed. How-
ever, the ICA solution has permutation ambiguity. Even if we change
the order of the separated signals at the ICA output, it is still an ICA
solution. This causes the permutation problem of frequency-domain
BSS. We need to align the permutation of each frequency bin so that
the frequency components of the same source are grouped together.

Various methods have been proposed for solving the permuta-
tion problem: 1) making the separation matrices smooth [2, 3], 2)
maximizing the correlation of separated signal envelopes [4], 3) an-
alyzing the directivity patterns calculated from the separation matri-
ces [5, 6] and 4) analyzing the mixing system information estimated
with ICA [7, 8]. The third and fourth methods utilize similar kinds of
information, such as estimated directions of sources. However, the
fourth method is more general than the third one, as it can easily be
applied to a situation where there are more than two sources [7, 8].
We have experimentally shown that the fourth (or the third) method
provides a robust solution for the permutation problem [9]. When
we employ such a method, we prefer the sensor spacings to be no
larger than half the minimum wavelength of interest. We typically
use a 4 cm sensor spacing for an 8 kHz sampling rate to satisfy this
condition. If sensor spacing is wider, spatial aliasing might occur at
high frequencies [11], and the ICA solution in such a frequency bin
implies multiple possibilities for a source location.

In this paper, we propose a new method for dealing with a situa-
tion where the distance between sensors is larger than half the wave-
length. Although a wider sensor spacing is discussed in [6], it is
based on the third method, which is hard to generalize for more than
two sources. With the new proposed method working effectively, we
can use widely spaced sensors to achieve better separation for low
frequencies or we can increase a sampling rate, for example up to
16 kHz, to obtain better speech recognition accuracy for separated
signals.

2. FREQUENCY-DOMAIN BSS

This section presents an overview of frequency-domain BSS. Fig-
ure 1 shows the flow that we consider in this paper. First, the sen-
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Fig. 2. Direct-path model

sor observations (1) are converted into frequency-domain time-series
signals (2) by an STFT. Let us rewrite (2) in a vector notation:

x(f, t) =

N∑
k=1

hk(f)sk(f, t), (3)

where x = [x1, . . . , xM ]T is the vector of observed signals and
hk = [h1k, . . . , hMk]T is the vector of frequency responses from
source sk to all sensors.

Then, complex-valued instantaneous ICA [10] is applied to the
mixtures x(f, t) to obtain separated frequency components:

y(f, t) = W(f) x(f, t), (4)

where y = [y1, . . . , yN ]T is the vector of separated frequency com-
ponents and W = [w1, . . . ,wN ]H is an N ×M separation matrix.

With the method considered here, the inverse of separation ma-
trix W (or the Moore-Penrose pseudoinverse if W is not square) is
calculated in each frequency bin. The inverse is represented as

[a1, · · · ,aN ] = W−1, ai = [a1i, . . . , aMi]
T , (5)

which we call basis vectors obtained by ICA, because the mixture
x(f, t) is represented with a linear combination of basis vectors by
multiplying W−1 and (4):

x(f, t) =

N∑
i=1

ai(f)yi(f, t). (6)

By comparing (6) and (3), we see that a basis vector ai(f) repre-
sents the same information as hk(f) up to permutation and scaling
ambiguity if ICA works well. The use of different subscripts, i and
k, indicates the permutation ambiguity.

Next, the permutation ambiguity is aligned. This paper focuses
on the fourth method discussed in the introduction, which analyzes
the mixing system information represented by the basis vectors ai(f).
Section 3 will discuss the way to analyze the information and then
align the permutation.

Then, the scaling ambiguity of ICA is aligned by

yi(f, t) ← aJi(f)yi(f, t), (7)

where J is the index of a reference sensor (see [8] for the rationale
of this operation). Finally, time-domain output signals yi(t) are ob-
tained from separated frequency components yi(f, t) by an inverse
STFT (ISTFT).

3. PERMUTATION ALIGNMENT

In this section, we propose a new method for solving the permuta-
tion problem. It is based on an analysis of the mixing system infor-
mation estimated by ICA and represented in basis vectors (5). The
method can handle a situation where spatial aliasing occurs because
of a wide sensor spacing or a high sampling rate.

Table 1. Experimental setup A

Source directions 70◦ and 150◦ (2 sources)
Sensor spacing dmax = 20 cm (2 sensors)
Source distance from sensors 120 cm
Sampling rate 16 kHz
Reverberation time RT60 = 130 ms
Frame size of STFT 128 ms
Source signal speech of 3 s
Propagation velocity c = 340 m/s

3.1. Assumption and basic idea

We assume a simple direct-path model (Fig. 2) for the mixing sys-
tem, even though in reality signals are mixed in a multi-path model
(1). This simplified model is expressed in the frequency domain:

hjk(f) = λjk · e−j 2πfτjk , (8)

where τjk and λjk ≥ 0 are the time delay and attenuation from
source k to sensor j, respectively. Since we cannot distinguish the
phase (or amplitude) of sk(f, t) and hjk(f), these two parameters
can be considered to be relative. Thus, without loss of generality, we
normalize them by

τjk = (djk − dJk)/c, (9)∑M

j=1
λ2

jk = 1, (10)

where djk is the distance from source k to sensor j (Fig. 2), and c
is the propagation velocity of the signal. Normalization (9) makes
τJk = 0, i.e. the relative time delay is zero at the reference sensor J .

As explained in Sec. 2, a basis vector ai(f) represents the same
information as hk(f) up to permutation and scaling ambiguity. Fol-
lowing (9) and (10), the scaling ambiguity is aligned by the operation

ai ← ai

||ai||e
−j arg(aJi) (11)

which makes arg(aJi) = 0 and ||ai|| = 1. Now, the task for the
permutation problem is to determine a permutation Πf that relates
the subscript i and k with i = Πf (k), and to estimate parameters
τjk, λjk that make the model (8) match the aji(f) element of the
basis vector. This can be formulated so as to find Πf , τjk and λjk

that minimize the cost function:

J =
∑
f∈F

N∑
k=1

M∑
j=1

|aji(f)−λjk ·e−j 2πfτjk |2, i = Πf (k), (12)

where F is the set of frequencies that we have to consider.
To make the discussion here intuitively understandable, we per-

formed an experiment with setup A shown in Table 1. This was a
simple M = N = 2 case, but the sensor spacing was 20 cm, which
induced spatial aliasing for a 16 kHz sampling rate. Figure 3 shows
the argument of a21 and a22 after the normalization (11) where we
set J = 1 as a reference sensor. The arguments of a1i(f) are not
shown because they are all zero. The relative time delay τ21 and
τ22 can be estimated from these data. However, we see some circu-
lar jumps at high frequencies, which are caused by spatial aliasing.
They complicate the estimation of τ21 and τ22.

3.2. For frequencies without spatial aliasing

Let us first consider the lower frequency range

FL = {f : −π < 2πfτjk < π, ∀j, k} (13)

where we can guarantee that spatial aliasing does not occur. Let
dmax be the maximum distance between the reference sensor J and
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Fig. 3. Arguments of a21 and a22 before permutation alignment

any other sensor. Then the relative time delay is bounded by

max
jk

|τjk| ≤ dmax/c (14)

and therefore FL can be defined as

FL = {f : 0 < f <
c

2dmax
} . (15)

For frequency range FL, appropriate Πf for (12) can be ob-
tained by the method shown in our previous work [8], which further
normalizes the basis vectors (11) to remove frequency dependence:

āji(f) ← |aji(f)| exp

[
j
arg[aji(f)]

4fc−1dmax

]
. (16)

The rationale of dividing the argument by 4fc−1dmax is discussed
in [8]. With this operation, the cost function (12) is converted into

J̄ =
∑

f∈FL

N∑
k=1

M∑
j=1

|āji(f) − h̄jk|2, i = Πf (k) (17)

where
h̄jk = λjk · exp[−j

π

2

c · τjk

dmax
] (18)

is a frequency-normalized model. In a vector notation,

J̄ =
∑

f∈FL

N∑
k=1

||āi(f) − h̄k||2, i = Πf (k), (19)

where āi = [ā1i, . . . , āMi]
T and h̄k = [h̄1k, . . . , h̄Mk]T . Here we

see that frequency-normalized basis vectors āi(f) and the frequency-
normalized model h̄k do not depend on frequency. Therefore, J̄ can
be minimized efficiently by a clustering algorithm that iterates the
following two updates until convergence:

Πf ← argminΠ

N∑
k=1

||āΠ(k)(f) − h̄k||2, (20)

h̄k ←
∑

f∈FL

āΠf (k)(f), h̄k ← h̄k/||h̄k||. (21)

The first update (20) optimizes the permutation Πf for each fre-
quency with the current model h̄k. The second update (21) cal-
culates the most probable model h̄k with the current permutations.
This set of updates is very similar to that of the k-means algorithm
[12]. After the algorithm has converged, we update the subscript of
the basis vectors by

ak(f) ← aΠf (k)(f), k = 1, . . . , N. (22)

Figure 4 shows the arguments of ā21 and ā22 calculated by op-
eration (16) in the setup A experiment. For frequency range FL,
the permutations Πf were aligned and updated by (22). We see two
clusters whose centroids are the two lines represented by arg(h̄21)
and arg(h̄22). For frequencies higher than 850 Hz, we see the effect

0.85

Fig. 4. Arguments of ā21 and ā22 after permutations are aligned
only for frequency range FL = {f : 0 < f < 850 Hz}

Fig. 5. Arguments of a21 and a22 after permutation alignment using
model parameters estimated with data in the low frequency range
FL. Because τ21 and τ22 are not precisely estimated, there are some
permutation errors at high frequencies.

of spatial aliasing. This means that the frequency normalization (16)
does not work for these higher frequencies, and therefore we need a
new method to minimize the cost function (12).

3.3. For frequencies where spatial aliasing may occur

This subsection proposes a new method for deciding the permutation
Πf for frequencies where spatial aliasing may occur. The model
parameters τjk, λjk can be extracted from the frequency-normalized
model h̄jk (18) calculated by (21):

τjk = − 2

π

dmax

c
arg(h̄jk), λjk = |h̄jk| . (23)

Thus, a simple way is to use these extracted parameters for the cost
function (12), and decide the permutations Πf by

Πf = argminΠ

N∑
k=1

M∑
j=1

|ajΠ(k)(f) − λjk · e−j 2πfτjk |2 . (24)

However, τjk and λjk estimated only with frequencies in FL may
not be very accurate. Figure 5 shows arg(a21) and arg(a22) after
permutations were calculated by (24) using model parameters ex-
tracted by (23). We see some estimation error for τ21 and τ22.

A better way is to refine the model parameters τjk and λjk by
the gradient of the cost function J (12):

τjk ← τjk − µ
∂J
∂τjk

, λjk ← λjk − µ
∂J
∂λjk

, (25)

where µ is a step size parameter, and
∂J
∂τjk

∝ λjk

∑
f∈F

f · imag[ajΠ(k)(f) · ej 2πfτjk ] , (26)

∂J
∂λjk

∝
∑
f∈F

{
λjk − real[ajΠ(k)(f) · ej 2πfτjk ]

}
, (27)
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Fig. 6. Argument of a21 and a22 after permutation alignment using
model parameters refined with data at all frequencies. Now τ21 and
τ22 are precisely estimated, and permutations are aligned correctly.
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Fig. 7. Experimental setup B

are the partial derivatives of J with respect to τjk and λjk . The
operations imag[·] and real[·] extract the imaginary and real parts of
a complex number, respectively. We can iteratively update Πf by
(24) and (τjk, λjk) by (25) to obtain better estimations of the model
and consequently better permutations. Note that the structure that
iterates (24) and (25) has the same structure as (20) and (21). Figure
6 shows arg(a21) and arg(a22) after τjk and Πf were refined by
(24) and (25). We see that τ21 and τ22 were precisely estimated and
the permutations were aligned correctly even for high frequencies.

4. EXPERIMENTS

To see the effectiveness of the new method, we conducted experi-
ments to separate 3-second English speeches blindly. We used two
setups. Setup A (Table 1) was used to illustrate the process of the
method with Figs. 3-6. Setup B (Fig. 7) was used to examine the
validity of the method for a more complicated case. One attractive
feature of the method shown in Sec. 3 is that the system does not
have to know the sensor geometry, but simply the maximum dis-
tance dmax from a reference sensor J to the other sensors. In setup
B, we assigned the center microphone as the reference sensor, and
provided the system with the information dmax = 30 cm.

Table 2 shows the BSS results measured with the average signal-
to-interference ratio (SIR) for 16 combinations of speeches. The
SIR was calculated as the ratio of the power of a target component
and interference components [9]. In method I, permutations were
aligned only for a low frequency range FL (corresponding to Fig. 4).
In method II, permutations were aligned for all frequency bins, but
with model parameters τjk and λjk estimated with data in the low
frequency range FL (corresponding to Fig. 5). In method III, permu-

Table 2. Comparison of average signal-to-interference ratio (SIR)
obtained with three different methods for permutation alignment.

Input SIR Method I Method II Method III

Setup A 0.0 dB 11.5 dB 15.4 dB 17.2 dB
Setup B −3.1 dB 9.0 dB 11.2 dB 13.8 dB

tations were aligned for all frequency bins with τjk and λjk refined
with data at all frequencies (corresponding to Fig. 6). We see that
method III provides superior results to the other methods. Since sep-
arated frequency components generated by ICA were the same for all
methods, the differences among these average SIRs were due solely
to the preciseness of the permutation alignment.

5. CONCLUSION

We have proposed a new method for the permutation problem of
frequency-domain BSS, which analyzes mixing system information
estimated with ICA. The method can handle a situation where the
sensor spacing is larger than half the minimum wavelength and thus
spatial aliasing occurs. Experimental results clearly show the effec-
tiveness of the proposed method.
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