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ABSTRACT

A new method for analyzing audio signals in the context of
musical transcription is described. It consists of a frame-
based expansion of the signal over a multi-scale time-fre-
quency dictionary with a set of logarithmic discrete fre-
quencies. This method, based on the Matching Pursuit algo-
rithm, provides the same frequency resolution as a constant-
Q filter-bank, but with a better time resolution, especially in
low frequencies, and an efficient noise rejection.

1. INTRODUCTION

Musical transcription can be defined as extracting musical
information from an audio file and representing it by means
of a musical notation, in terms of note starting time, dura-
tion, pitch, loudness and so on. It still remains an unresolved
problem for current computer systems. However, some ef-
ficient solutions have been proposed for single instruments
with a prior training period, for example by Marolt [1].

Concerning pitch estimation, some experimental results
have shown that the human brain decomposes the signal in
spectral components and tries to find a common reference to
all the partials. Many transcription algorithms are designed
according to this scheme: first, a time-frequency analysis
is performed. Then, a partial-tracking and note-extraction
stage tries to recognize elementary harmonic structures. In
state-of-the-art transcription systems, time-frequency anal-
ysis often relies on a specific filter-bank with a logarithmic
band-width progression: constant-Q [2] or gammatone [1].
Filter-banks are easy to implement as they require few com-
putation time, but several drawbacks can be pointed out: no
distinction is made between periodic (tonal) and a-periodic
components. Thus, a-periodic components, considered as
noise in a transcription point of view, can lead to false note-
detection. Furthermore, constant-Q filter-banks are known
to achieve a poor time-resolution in low-frequencies.

According to these considerations, a sinusoidal model-
ing of the audio signal seems more accurate. The Match-
ing Pursuit algorithm (MP) proposed by Mallat and Zhang

[3] decomposes a signal into a linear expansion of multi-
scale time-frequency waveforms selected from a redundant
dictionary. But in the standard implementation of the MP,
the frequency scale is linear, while the transcription prob-
lem requires a logarithmic scale. One can note that MP
decomposition differs form a wavelet-transform, where the
frequency of each waveform is related to the scale-factor
(for an application of a wavelet-transform to musical anal-
ysis, see [4]). The resulting time-frequency resolution of a
wavelet-transform is hardly sufficient for transcription.

Besides the problem of time-frequency resolution, the
practical implementation of a transcription system requires
a frame-based signal analysis. A frame-based implementa-
tion of MP as been proposed, but with a single time-scale
[5], which seriously reduces the interest of the algorithm.
Gribonval and Bacry have proposed a specialized version
of the MP algorithm for musical transcription [6], but their
approach is focused on the use of harmonic waveforms,
which allows to perform the time-frequency analysis and
the partial-tracking in a single stage. However, this algo-
rithm has a high computational complexity.

In this paper, we present a new method for time-frequen-
cy analysis of musical signals, based on the standard MP al-
gorithm, but with an original dictionary of time-frequency
waveforms featuring a chromatic frequency scale. The dic-
tionary and the decomposition algorithm are described and
our system is compared to a constant-Q filter-bank.

2. DICTIONARY OF CHROMATIC WAVEFORMS

To carry out a short-time decomposition of the audio sig-
nal, the time-discrete input signal is segmented in frames of�

samples with an overlap factor � , and weighted with a
Hanning window:

� � � � � ��
� � 	 
 � � 
 � � �� � �

(1)

This window was chosen because it achieves a local en-
ergy conservation after add-overlap, and because its simple
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analytic expression allows further calculation, concerning
inner-products and Wigner-Ville transform.

The weighted signal in each frame is expanded over a
redundant dictionary of complex waveforms localized in the
time-frequency space:

� � � � � � � � � � � � �� � 	 
 � � 
 � � � � � � � � � � � � � � � (2)

� is the scale-factor, � the translation parameter and � the
modulation frequency.

� � � � is a real window function and� �
is a normalization factor. In standard MP, � � � � �

are time-
discrete Gabor waveforms, which means

� � � � is a Gaussian
function. In our case, we use compactly supported wave-
forms:

� � � � is adapted to the window function � � � �
in order

to capture efficiently stationary tonal signals with a small
number of components per frame.� � � � � � � � 	 
 � � � � � � � � � � � � � � � � � (3)

Parameters � and � are discretized in the following way:� � � � � � � � � � � � �  
 ! " � � � � (4)

� � # �
� � # � $ � � � � � �� � � % (5)

Compared to the standard MP, we allow full-length atoms,
i.e. � � �

, and remove side-atoms, i.e. � � &
. This second

condition can be justified by the fact that, after windowing,
there is no energy left on both sides of the frame.

For frequency discretization, we propose:

� � � � � ' ( ' )* + (6),
is a frequency index corresponding to a half-tone in the

musical chromatic scale, or equivalently to a MIDI note
number. � � , at index

, � , is the calibration frequency. Usu-
ally, � � is the frequency of A4, set to 440 Hz. The amplitude
of

,
depends on the bounds of frequency analysis. Alterna-

tively, a finer scale is obtained by adding side-frequencies
around each half-tone:� � - 
 � � � ' ( ' )* + � � � � ' ( ' ) . / '* + � � � � ' ( ' ) ( / '* + � (7)

Setting the parameter 0 1 � � & � � 2 3 �
is a trade-off between

sensitivity and selectivity. In our experimentations, we chose0 1 � & � �
. This finer frequency scale significantly improves

partials detection when the calibration frequency is not op-
timal, or when a musical instrument is not perfectly in tune.

3. DECOMPOSITION ALGORITHM

The adaptive frame-based decomposition algorithm expands
the audio signal 4 � � �

as:

4 � � � � 5 6 5 7 8 6 � 7 � � 9 6 � 7 : � � �
(8)

where ; is the frame index, < the waveform index inside
each frame and 8 6 � 7 the decomposition coefficients. The
intra-frame decomposition is performed independently with
an algorithm similar to the MP. In fact, as the signal 4 � � �
is real, the intra-frame decomposition is only made of real
atoms:

8 � = � � > � ? @ � � � � 8 A � = � � > � B ? @ � � � � �
Re C 8 � = � � > � ? @ � � � D

(9)

Thus, the dictionary can be restricted to positive frequen-
cies.

The intra-frame decomposition algorithm can be sum-
marized as follows: at the beginning, the residual signal is
equal to the signal itself. At each step, an atom is subtracted
from the residual signal. This atom is co-linear to the wave-
form that maximizes the modulus of the inner-product with
the residual signal. The decomposition is stopped when the
energy of the residual signal becomes smaller that a pre-
defined threshold. The exact description of this algorithm
is:

Initialization : compute E � the inner-product F 4 � � � G
set < � &

and H � � 4
while I � H 7 � J K I � 4 �

Compute E � the inner-product:F H 7 � � � G � F 4 � � � G � L 7M N � 8 M O � � 9 M : � � � P
Select the best waveform index:� � < � �

Argmax Q F H 7 � � � G Q
Subtract the corresponding real atom:

8 7 � O H 7 � � � 9 7 : PH 7 R � � H 7 � �
Re C 8 7 � � 9 7 : D

Increment the waveform index: < � < � �
end

I � 4 � (resp. I � H 7 � ) is the energy of signal 4 (resp. H 7 ).
The inner-products F � S � � � G depend only on the dictionary
and can be obtained from an analytic formula, and even-
tually pre-computed and stored if the dictionary is small
enough. One can notice that most inner-products are equal
to zero or very small, and thus, only the significant values
need to be stored. The high-resolution version of the MP
[7] has also been considered, but no significant improve-
ment could be pointed out on real signals, while the compu-
tational complexity is higher.

If the frame-length is
�

samples, each step of the algo-
rithm requires T � � � operations. This is lower than a stan-
dard MP which requires T � �  
 ! " � � operations at each
step, and lower that a FFT. The total amount of operations
depends on the energy constant K and on the input signal
itself.
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4. RESULTS

In our experimentations, we use monophonic signals down-
sampled from 44.1 to 11.02 kHz. The frequency scale de-
fined by equation (7) starts at C2 (65.41 Hz) and stops at
B6 (1,976 kHz). Each frame has

� � � � � �
samples, cor-

responding to approximately 0.4 s. With 5 scale-factors,
i.e. � � � � � � � � � � � � � � , the dictionary is composed of
10260 waveforms (180224 for the standard MP). This rela-
tively small value allows to pre-compute and store the inner-
product values in order to save computation time. The over-
lap factor is set to � � � �

. This value can be considered as
a medium-high overlap factor. A high value gives a smooth
time-frequency representation but requires more computa-
tion time. Computation time can se saved by choosing the
minimum value, i.e. � � �

. The energy constant � is set
to a small value, � � � 	

, in order to reject efficiently noise
components.

We compare our method to a half-tone constant-Q filter-
bank with 12 FIR filters per octave, derived from a quarter-
tone bank [8], where only odd filters have been kept to im-
prove the separation between sub-bands. A time-frequency
image is obtained by smoothing the energy function at the
output of each filter.
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Fig. 1. Time-frequency image of a single sine (C3 + 1/16th
of tone) in noise, for both methods. Dashed lines indicate
the beginning and the end of the sine.

For our decomposition, we derive a time-frequency rep-
resentation from the decomposition (8) with a time-discrete
version of the Wigner-Ville transform [9]:

� � � � 
 � � � �



�
� � � 
 � � � 	 � � 	 
 � � 
 � � � � 
 � �

(10)

The Wigner-Ville transform of each waveform depends on
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Fig. 2. Time-frequency image of a single sine (F5 + 1/16th
of tone) in noise, for both methods. Dashed lines indicate
the beginning and the end of the sine.

the transform of the window function
� � � � :� � 	 � � 
 � 
 � � � � 
 � � � � 	 � � � � � � � �� 
 � � � � � � �

(11)

The analytic expression of
� � �

was calculated from equa-
tion (3).

Figures 1 and 2 show the time-frequency images ob-
tained from both methods when the signal is a single out-
of-tune sine in white noise (RSB = 10 dB). The sine fre-
quency corresponds neither to a half-tone, neither to side-
frequencies defined in (7). Figure 1 represents a C3 + 1/16th
of tone, and figure 2 a F5 + 1/16th of tone. We can see
that our decomposition rejects efficiently the background
noise. We can also notice that the time-resolution is sig-
nificantly improved, especially on the C3. Both methods
are characterized by a relative lack of frequency selectivity
on the C3. Concerning our method, this is due to the fact
that low-frequency waveforms are not orthogonal enough.
One can notice a spurious sub-harmonic on the F5, but with
a very low energy.

Figures 3 and 4 represent the analysis obtained from
both methods on a real recording. We chose a piano piece
with a fast tempo, W.A. Mozart’s Alla Turca (see figure 5),
which can be considered as a difficult material. We can see
that our decomposition provides a cleaner time-frequency
image than the constant-Q filter-bank, with a better contrast:
with the filter-bank representation, some significant partials
have the same energy-level as noise components, while with
the MP decomposition, the most energetic partial of each
note is clearly pointed up. Few spurious partials can be ob-
served in the MP image, among which sub-harmonics, and
their energy level is globally similar to the energy of noise
components in the filter-bank image.
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Fig. 3. Time-frequency image of a piano recording with the
constant-Q filter-bank analysis.

5. CONCLUSION

In this paper, we have presented a new method for frame-
based time-frequency analysis of audio signal in the con-
text of musical transcription. Our decomposition algorithm
have been compared to a constant-Q filter-bank, which re-
mains a classical solution for musical transcription. We
have pointed out that frequency selectivity is similar in both
techniques, but our algorithm provides a better time-reso-
lution while the background noise is efficiently rejected. We
have also shown that our method is characterized by a rel-
atively low computational complexity, compared to other
adaptive decompositions, in � � � � where

�
is the frame-

length. We believe that this analysis algorithm could be effi-
ciently associated with a partial-tracking and note-extraction
stage, using neural networks for example. This point will be
investigated in further studies.
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Fig. 4. Time-frequency image of a piano recording with the
MP decomposition.
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Fig. 5. Musical score of the piece of piano used for tests.
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