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ABSTRACT

Periodicity estimation of an audio signal, for applications such as

pitch, multiple pitch or tempo estimation is often problematic due

to the presence of multiple harmonics in the audio signal producing

octave errors. While pitch models or rhythm models can be used,

they remain often dedicated to a specific problem. In this paper, we

propose a straightforward approach for periodicity estimation based

on the combination of a spectral representation and a temporal rep-

resentation. This method allows a better emphasis on the frequen-

cies corresponding to the various pitches. We show the ability of

this representation to adequately estimate pitch and visualize signals

with multiple pitch content.

1. INTRODUCTION

Because of its numerous applications (transcription, separation, front-

end for further sound analysis), periodicity of a musical audio sig-

nal is one of the most important information. Numerous proposals

have been made for this task, either based on novel signal represen-

tations ([2] [3] [4]), or on novel periodicity models ([5] [6] [7] [8]

[9]). In this paper, we propose a straightforward approach for peri-

odicity estimation based on the combination of a spectral represen-

tation (amplitude of the discrete Fourier transform, amplitude of the

frequency-reassigned DFT or autocorrelation of the previous) and a

temporal representation (autocorrelation function or real-cepstrum).

This method allows a better emphasis on the frequencies correspond-

ing to the various pitches.

The paper is organized as follows. In part 2, we give an overview

of the spectral and temporal periodicity representations that will be

used for our method. In part 3, we propose our method for period-

icity estimation based on the combination of spectral and temporal

representations. Five different functions are proposed. In part 4, we

evaluate the proposed functions for two different tasks: pitch estima-

tion of musical instrument and multiple pitch signal visualization.

2. PERIODICITY REPRESENTATION

2.1. Spectral representation

The Discrete Fourier Transform of a temporal signal (DFT) is one

of the most used representation for periodicity estimation. There

exist numerous methods to estimate the periodicity from the am-

plitude of the DFT, X(k), (maximum likelihood [5], two-way mis-

match [6], ...). A naive method would be to take the first peak of

Part of this work was conducted in the context of the European IST
project Semantic HIFI [1] (http://shf.ircam.fr). Many thanks to Xavier Rodet
for the fruitful discussions.

the DFT amplitude (within a certain range). This would make the

underlying assumption that energy exist at the pitch frequency and

that the higher harmonics of the spectrum do not bring significant

extra-information. Since the DFT of a periodic impulse signal is a

set of harmonically related components, a peak also exists at “twice

the pitch” frequency. An octave error is therefore likely to occur.

The spectral resolution of the DFT can be improved using the

Frequency Reassignment (REAS) based on the reassigned spectro-

gram proposed by [4]. It consists of reallocating the energy of the

“bins” of a DFT to the frequency ωr corresponding to their center

of gravity. It is based on the computation of the instantaneous fre-

quency (time derivative of the phase) which can be efficiently com-

puted by:

ωr(x, ωk) = ωk −�
j

DFTdh(x, ωk)

DFTh(x, ωk)

ff
(1)

where � stands for the imaginary part, h stands for the analysis win-

dow and dh stands for the time derivative of the window: ∂h(t)/∂t.
Each bin ωk of the DFT is then reassigned to its center of gravity

ωr . The values are accumulated over frequency. We note Xre(k)
the resulting amplitude spectrum.

The Auto-Correlation Function of the amplitude of the DFT
(ACFofDFT) measures the periodicity of the DFT amplitude peak

positions using an auto-correlation function [10] [11]. The autocor-

relation of X(k) at a frequency k is defined as

R̂(k) =
1

N − k

N−k−1X
K=0

X(K)X(K + k) (2)

R̂(k) does not make any assumption related to the presence/absence

of energy at the pitch frequency. It is therefore robust to missing

fundamental. However, as it is the case for the DFT, a peak exists

at “twice the pitch” frequency and octave errors are likely to occur.

Moreover, in the presence of multiple pitch (f1,f2), R̂(k) will be si-

multaneously influenced by the inter-distance between the harmonic

positions of each single pitch separately (nf1,nf2) and by the inter-

distance between the harmonics of the various pitches (nf1 −n′f2).

Also, for a spectrum reducing to a single component (like some flute

sounds), the estimation of the autocorrelation of X(k) is not appro-

priate. In the following we will use the autocorrelation of X(k) but

also of Xre(k).

2.2. Temporal representation

The Auto-Correlation Function of the temporal signal (ACF) [12]

measures the correlation of the signal with a time delayed version
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Fig. 1. [top] Amplitude of the DFT of the signal; superimposed:

gτ=T0/2(f) (continuous line) and f = 2
T0

(circle mark); gτ=T0(f)

(dashed line) and f = 1
T0

(star mark); gτ=2T0(f) (dotted line) and

f = 1
2T0

(triangle mark); [bottom] autocorrelation function; super-

imposed: τ = T0
2

, τ = T0, τ = 2T0 positions; on a periodic

impulse signal at f0= 1
T0

=2Hz.

of itself. There exist numerous methods to estimate the periodicity

from the ACF ([7]). The simplest one is to take the first positive peak

of the ACF (within a certain lag range). However, since the ACF of

a periodic impulse signal is a set of periodically related components,

a peak exists at “twice the period” (“half the pitch”) lag. An octave

error is therefore likely to occur. The ACF can be computed effi-

ciently using the inverse Fourier transform of the power spectrum.

Since the power spectrum is real and symmetric, its inverse Fourier

transform reduces to the real part. Therefore we can consider r̂(l)
as the projection of the power spectrum X2(f) on a set of cosine

functions (with φ(f = 0) = 0) with frequencies equal to the lag

τl = l/sr1:

r̂(l) =
1

N − l

X
k

|X(k)|2cos
„

2πk
l

N

«
(3)

r̂(l) measures the periodicity of the peak positions of the power spec-

trum. In Fig. 1, we illustrate this for a periodic impulse signal at

f0= 1
T0

=2Hz, the power spectrum of which is a set of harmonically

related peaks. We note gτ (f) = cos(2πfτ) the cosine function.

Positive values of r̂(τ) occur for τ values for which only the posi-

tive parts of gτ (f) coincide with the power spectrum peaks. This is

the case for τ = kT0, k ∈ N in the figure. Non-positive values when

positives parts and negative parts of gτ (f) in turn coincide with the

power spectrum peaks. This is the case for τ = T0/k, k > 1, k ∈ N
in the figure. This explains why the ACF is likely to produce “twice

the period” (“half the pitch”) octave errors but not “half the pe-

riod” (“twice the pitch”). However, a major drawback of the auto-

correlation function is its sensitiveness to the spectral envelope.

Apart from its homomorphic properties, the Real-Cepstrum of
the temporal signal (CEP) [13] [14] can also be considered as a

projection of the spectrum on a set of cosine functions. In the case

1sr stands for sampling rate.

of the real-cepstrum, the amplitude spectrum is expressed in the log-

domain before taking its inverse Fourier transform. The log-scale

allows a compression on the amplitude range, and therefore reduces

the amplitude variations due to the spectral envelope. This is why the

real-cepstrum is often preferred over the ACF for pitch estimation.

The real-cepstrum is expressed as:

ĉ(l) =
1

N − l

X
k

log(|X(k)|)cos

„
2πk

l

N

«
(4)

However the log-scale emphasizes the noise part of the spectrum. In

the following, when using the real-cepstrum, a threshold is applied

to log(|X(k)|) in order to reduce the influence of noise.

3. COMBINING TEMPORAL AND SPECTRAL
REPRESENTATION

In the rest of the paper, we note X(k) as the amplitude of the DFT,

Xre(k) the amplitude of the Frequency Reassigned DFT, R̂(k) the

autocorrelation of X(k), R̂re(k) the autocorrelation of Xre(k), r̂(l)
the autocorrelation function of the signal and ĉ(l) the real-cepstrum

function of the signal.

For the signal of Fig. 1, it is easy to see that only for τ = T0

we have simultaneously a maximum of the projection of the power

spectrum on gτ (f) and an energy peak in the power spectrum at

f = 1/τ . The same is true when using Xre(k), R̂(k) or R̂re(k)
instead of X(k) and when using ĉ(l) instead of r̂(l). We therefore

note S(k) either X(k), Xre(k), R̂(k) or R̂re(k) and t(l) either r̂(l)
or ĉ(l).

The proposed periodicity representation takes advantage of the

inverse octave errors of S(k) and t(l) by combining the two func-

tions into a single function, therefore reducing the octave ambiguity.

The combination is done by computing the product of S(k) with a

frequency-mapped version of t(l).

The computation is done as follows:

1. S(k) and t(l) are computed for the same signal frame with a

window of size N .

2. The value of t(l) at lag l is considered as a measure of the

periodicity at the frequency fl = sr/l. Each lag l > 0 can be

mapped to the frequency domain. We call Frequency-Mapped

the function t(l) mapped to the frequency domain.

3. We would like t(l) to measure the periodicities at the same

frequencies fk as S(k). We therefore interpolate the values

of t(l) at the positions l = sr/fk = N/k. The frequency-

mapped function is noted tS(k). One easily see that, since

t(l) has a constant temporal resolution, tS(k) has a decreas-

ing frequency resolution. A solution would be to use a vari-

able scale transform such as a constant-Q transform ([2]) in-

stead of a FFT/IFFT algorithm.

4. The proposed periodicity function is obtained by computing

the product of S(k) and tS(k). Depending on the choice of

S(k) and t(l) eight different functions can be estimated. We

consider the five following:

• YXr̂(k) = X(k) · r̂S(k),

• YXĉ(k) = X(k) · ĉS(k),

• YR̂r̂(k) = R̂(k) · r̂S(k),

• YR̂ĉ(k) = R̂(k) · ĉS(k).

• YR̂re ĉ(k) = R̂re(k) · ĉS(k).
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Fig. 2. From top to bottom [1] Signal [2] Amplitude of the DFT [3]

ACF function mapped to the frequency domain [4] YXr̂(k).

Y (k) constitutes a periodicity measure at the frequency k. Be-

cause of the use of the two transforms, Y (k) is less sensitive to

octave errors than any of the above mentioned representations. Of

course autocorrelation and spectral methods are identical (by doing

a matrix multiply) but the non-linearities of the frequency mapping

and product function matter. In Fig. 2 we illustrate the computation

of the product function YXr̂(k) with a simple example (a periodic

impulse signal at 2Hz) . In this case, the sub-harmonic of the ACF

and over-harmonic of the DFT cancel each other. Only one peak

remains at the 2Hz periodicity frequency.

4. APPLICATIONS

We present here two applications of the periodicity function Y (k):

pitch estimation and visualization of multiple pitch signals.

4.1. Pitch estimation

The objective is not to propose yet another pitch estimation method

but rather to test if the value of Y (k) which corresponds to the pitch

frequency can be sufficiently discriminated from the other frequen-

cies so that just taking the frequency corresponding to the maximum

value of Y (k) provides a good approximation of the exact pitch. If

it is the case this approximation could be used as an initialization

(bootstrap) for other pitch estimation algorithms.

We’ve set up a large test set of 5371 musical instrument sounds

coming from various databases: Studio-On-Line Ircam database,

Iowa university database, McGill university database, a Microsoft

database, and two private databases vi and pro. Each sound contains

a single constant pitch note. The pitches range from 27.5 Hz (A0) to

7900 Hz (B8). 27 instruments are represented from piano (slightly

inharmonic sound), pizzicato string (fast damping), bowed strings,

brasses, single reeds, double reeds instruments, ... For each sound,

a straightforward method is used to derive the pitch. We compute

Y (k, t) on a frame basis. In order to be able to discriminate adja-

cent pitches in the lower part of the spectrum, we have used a large

window size of 250ms (with a 66% overlap between frame). We

then compute the energy weighted time average of Y (k, t). Finally,

the pitch is chosen as the frequency corresponding to the maximum

of Y (k). Five versions of Y (k) are tested: YXr̂(k) (DFT/ ACF),

YXĉ(k) (DFT/ CEP), YR̂r̂(k) (ACFofDFT/ ACF), YR̂ĉ(k)) (AC-

FofDFT/ CEP) and YR̂re ĉ(k) (ACFofREAS/ CEP). For comparison,

we have also tested the performance of the well-known Yin algo-

rithm [7] (reference code given by the author) with parameters set

accuracy 1 accuracy 2
DFT / ACF 81,6 91,7
DFT / CEP 91,4 95,8
ACFofDFT / ACF 95 96,1
ACFofDFT / CEP 97 97,6
ACFofREAS / CEP 97 97,3
Yin 94,9 95,5

Table 1. Recognition rate of pitch estimation for the various algo-

rithms

to the minimum frequency 27.5 Hz and maximum frequency 7900

Hz. The process described above is also applied here to derive a sin-

gle pitch estimate for each sound. Two performance measures are

used: accuracy 1: the recognition rate of the correct note, accuracy
2: the recognition rate of the correct chroma (note position inside the

octave).

The results are indicated in Table 1. The best results are ob-

tained with YR̂ĉ(k) (ACFofDFT/CEP): 97% for accuracy1, 97.6%

for accuracy2. This is not surprising since YR̂ĉ(k) benefits from the

use of the autocorrelation of the DFT (allowing to solve the missing

fundamental problem), and from the real-cepstrum (allowing to re-

duce the spectral envelope influence). The small difference between

accuracy 1 and 2 indicates that octave errors remain low. The use

of the Frequency Reassigned DFT (ACFofREAS/CEP) does not im-

prove the performances. For comparison, the results obtained with

the reference Yin algorithm are lower: 94.9% for accuracy1, 95.5%

for accuracy2. In Fig. 3, we indicate the detailed analysis of accu-

racy 1/2 by pitch and instrument class for the YR̂ĉ(k) case. Most

errors occurred for the piano (inharmonicity), pizzicato strings (fast

damping) and recorder/piccolo (single component spectrum not ap-

propriate for R̂(k))2. The recognition rate is also lower for the pitch

extremes (very low-pitch and very high-pitch).

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

M
id

i n
ot

e

Accuracy
0.8 0.85 0.9 0.95 1

pno
cb
vcl
cor

tbtb
fltu
bsn
clsb
htb

saxalto
alto−pizz
cb−pizz
vcl−pizz
vln−pizz

gui
harp
alto
vln

corn
trpu
tubb
picc
reco

corang
saxtenor

acco
saxsop

Accuracy

Accuracy 2

Accuracy 1
Accuracy 2

Accuracy 1
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class (in midi note number) [right] by instrument class

4.2. Multiple pitch visualization

Y (k) can be used efficiently for visual representation of multiple

pitch signals. For multiple pitch signals, YXĉ(k) is preferred over

YR̂ĉ(k), since, as mentioned before, autocorrelation of the spectrum

2piano=pno, pizzicato strings=vln-pizz/ vcl-pizz/ cb-pizz/ alto-pizz,
reco=recorder, piccolo=picc.
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Fig. 4. [top] YXreĉ(k, t) over time represented in a spectrogram

way [middle] mapping of YXre ĉ(k, t) frequencies to midi notes [bot-

tom] manual midi note transcription on J. S. BACH, Well-Tempered

Clavier I, 02 Fugue in CM, window size=100 ms.

does not provide meaningful information in case of multiple pitch.

For time-varying signals, a shorter analysis window is used: 100 ms.

In order to increase the spectral resolution Xre(k) is used instead of

X(k). In Fig. 4 upper part, we draw the values of YXre ĉ(k, t) over

time in a spectrogram way. The signal corresponds to the first 16s

of the Well-Tempered Clavier I, 02 Fugue in CM from J. S. BACH.

The middle part represents a mapping of YXre ĉ(k, t) frequencies

to the logarithmic midi note scale. It is represented as a piano-roll

(X-axis = times, Y-axis = midi note). For comparison, the lower part

represents the manual midi note transcription. Except an octave error

present around time 5s, YXre ĉ(k, t) allows to visualize clearly the

various multiple pitch of the piano performance. Although deep tests

remain to be done, informal tests allow to believe that YXre ĉ(k, t)
could be used as an efficient initialization (bootstrap) for multiple

pitch estimation algorithms.

4.3. Tempo estimation

In [15], we have used YXr̂(k) to estimate the periodicities related to

the rhythm of an audio signal . In this case three periodicities were

to be estimated: the measure periodicity (lowest frequency), the beat
periodicity (middle frequency) and the tatum periodicity (smaller

time unit subdivision of the score, highest frequency). An onset-

energy function is first extracted from the audio signal. YXr̂(k) is

then used to emphasize the three main frequencies of this function.

5. CONCLUSION

In this paper, we’ve proposed a straightforward approach for period-

icity estimation of musical audio signals based on the combination of

a temporal representation and a spectral representation. Various time

and spectral representations have been considered. For single pitch

estimation, the best results were obtained when combining the au-

tocorrelation of the amplitude of the DFT with a frequency-mapped

real-cepstrum. For multiple pitch visualization, the best results were

obtained when combining the amplitude of the frequency reassigned

DFT with a frequency mapped real-cepstrum. Further works will

concentrate on exploiting the capability of this method for initializa-

tion of pitch and multiple pitch estimation algorithms. It is worth to

note that any two pitch estimation models with inverse octave errors

could be combined in the way as proposed.
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