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ABSTRACT

A method is proposed for the analysis of acoustic scenes.

The contribution of each competing source is suppressed on

the basis of harmonic structure or cross-sensor correlation,

in such a way that other sources may be estimated. Succes-

sive suppression of sources allows the scene to be character-

ized. In the limit of purely periodic sources and no noise, the

method provides accurate estimates of fundamental frequency

and spectral content. In the presence of noise or imperfect pe-

riodicity, it offers likelihood functions from which the spec-

tral content of sources may be inferred using Bayesian meth-

ods. The method is an alternative to more familiar spectral

and spectro-temporal methods of acoustic scene analysis. An

advantage is that precise analysis is possible using short tem-

poral windows.

1. INTRODUCTION

Cherry [1] coined the expression ”cocktail party effect” to

describe our ability to understand the overlapping speech of

multiple speakers, a task which human listeners still perform

better than machines [2]. Many efforts have attempted to

replicate our skills of Auditory Scene Analysis (ASA) [3], in

what are known as Computational Auditory Scene Analysis

(CASA) systems. Pioneering work was done by Parsons [4]

and Weintraub[5]; more recent efforts are reviewed by Cooke

and Ellis [6] and others [7, 8, 9]. In addition to perception-

inspired approaches, recent progress has been made using sta-

tistical and machine-learning techniques (e.g. [10, 11]).

These techniques usually operate on a spectro-temporal
representation produced either by a short-term Fourier trans-

form (STFT) or an auditory filterbank. Performance is cru-

cially dependent on the choice of analysis parameters such

as window shape and size, or filter shape and bandwidth.

There is a well-known tradeoff between temporal and spec-

tral resolution [12]. The best choice of parameters is signal-

dependent, and values appropriate for one task may be less

effective for another. No representation is optimal for all

scenes: any given choice is necessarily suboptimal for some

scenes(this situation may be alleviated by the use of overcom-

plete bases, e.g. [13]).

This paper proposes instead to use representations based

on running power and autocorrelation functions (ACF) as a

basis for scene analysis. The goal is to ”make sense” of the

scene: extract signal parameters such as fundamental frequency

(F0) or spectral envelope, or allow a pattern-matching algo-

rithm to access voices within the scene (for example to per-

form automatic speech recognition, or content-based retrieval

of music or multimedia). In this paper the observable input

is a single-channel signal, but processing principles can be

extended to multichannel processing.

2. INGREDIENTS

This section introduces the required ingredients and notations.

Given a signal x(t), the running autocorrelation function is

defined as:

〈x〉t(τ) = (1/W )
i+W∑

i=t+1

x(i)x(i − τ) (1)

where τ is the lag, t indexes the time at which the calculation

was made, and W is the size of the integration window. W
determines the amount of temporal smoothing applied to the

statistic. The definition differs from that of the more common

short-term autocorrelation function:

(1/W )
i+W−τ∑

i=t+1

x(i)x(i − τ) (2)

by the upper limit of the integration. This latter definition is

more common than the first, because it is related to the short-
term power spectrum and can be efficiently implemented based

on the FFT. Its main drawback is that the amount of tempo-

ral smoothing varies with τ and vanishes as τ approaches W .

In Eq. 1 the integration time is instead independent of τ , and

the running ACF can thus be calculated for arbitrary τ . This

paper uses the definition of Eq. 1. The running power of the

signal indexed by time t is defined as:

||x||t = 〈x〉t(0) (3)
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Given a candidate period T , we define the periodic-aperiodic
power decomposition of x using the following notation:

x
+T

(t) = [x(t) + x(t − T )]/2

x
−T

(t) = [x(t) − x(t − T )]/2. (4)

These are simply the time-domain comb-filtered versions of

x that sum up to x:

x
+T

+ x
−T

= x.

They constitute a partition of its power in the sense that:

||x+T ||t + ||x−T ||t = (||x||t + ||x||t−T )/2. (5)

The right hand side is the average of two estimates of the

power. This decomposition is useful for at least three rea-

sons: (a) If x is periodic with period T , then x
+T

= x and

x
−T

= 0. In this sense, we can interpret x
+T

and x
−T

as the

“periodic” and “aperiodic” parts of x respectively. (b) From

Parseval’s relation it follows that the same decomposition ap-

plies to short-term power spectra: X
+T

(ω)t + X
−T

(ω)t =
(X(ω)t + X(ω)t−T )/2, where X(ω)t designates the short-

term power spectrum calculated at t. In other words, the

power spectrum of x is split into “periodic” and “aperiodic”

parts.This can also be understood by noting that Eq. 4 de-

fines filters with transfer functions H
+T

(ω) = cos2(ωT ) and

H
−T

(ω) = sin2(ωT ) that sum to one for all ω. (c) The de-

composition can be generalized to more than two terms, as

discussed below.

The squared difference function (SDF) is defined as:

dt(τ) = (1/W )
i+W∑

i=t+1

[x(i) − x(i − τ)]2 = 4||x−τ ||t. (6)

This is simply the Euclidean distance between windows of

size W shifted by τ . It is related to the running ACF by:

dt(τ)=||x||t + ||x||t−τ − 2〈x〉t(τ). (7)

To the extent that the first two terms are constant (W large or

period multiple), SDF and ACF offer the same information.

We will need quantities such as 〈x〉t(τ) or dt(τ) for ar-

bitrary values of t, τ , and W . Computational efficiency is

not our main focus, but it is worth saying a few words about

the issue. The running ACF may be implemented by FFT as

the cross-correlation between windows of size W and W +
2τ

MAX
, where τ

MAX
is the maximum required lag. An FFT-

based formula is efficient if the statistic is calculated sparsely

in time, but for higher frame rates an incremental formula

may be more efficient, as illustrated here for power:

||x||t = ||x||t−1 − x(t)2 + x(t + W )2.

Similar formulae exist for the running ACF and SDF. If 〈x〉t(τ)
has been calculated for the required range of t and τ , then

other useful statistics can be derived cheaply according to for-

mulae such as Eq. 7. By carefully arranging these precalcu-

lated values, it is possible to derive values for arbitrary W
at cost (o(log W )). Quadratic interpolation formulae can be

used to derive values for non-integer values of t, τ , and W .

To summarize, the ingredients required by the methods to

be described include power, running ACF, SDF, and derived

statistics that can be calculated at a reasonable computational

cost.

3. F0 ESTIMATION

3.1. Single F0 estimation

Supposing the observed signal x(t) is quasiperiodic, its pe-

riod at time t can be found by searching over lags τ for a

minimum of ||x−τ ||. This is the basis of the YIN method of

fundamental frequency estimation that is described and eval-

uated in [14].

3.2. Multiple F0 estimation

Supposing the observed signal x(t) is the sum of two or more

quasiperiodic voices, their multiple F0 values can be esti-

mated iteratively. An initial estimate T of one voice is derived

from a single-voice algorithm and a time-domain comb-filter

tuned to T is applied to suppress that voice so that the others

can be more easily estimated. The operation is repeated for

each voice in the mixture. Concretely, a method such as YIN

is applied to the mixture to obtain T , and then applied again to

the comb-filtered signal x
−T

to obtain a second estimate T ′.
The comb filter is then tuned to T ′ to refine the estimate of

T , or else the method may be applied to x
−T,−T ′

to estimate

a third period, etc. This is the basis of the MMM method of

multiple F0 estimation described in [15, 16].

4. HARMONIC POWER DECOMPOSITION

The stage is now set for the analysis of acoustic scenes con-

taining periodic or quasiperiodic voices. Important informa-

tion is usually lost in the mixing operation from which observ-

able signal(s) are derived, and no general solution exists to

extract all component voices in all cases. Instead, we should

aim to extract the partial information that is available in each

case, and then piece it together using model-based techniques,

e.g. within a Bayesian framework. Some ways to do so are

outlined here.

4.1. Single periodic voice

If the observed signal x is periodic and the period T is an in-

teger multiple of the sampling period, the power spectrum can

be derived exactly from the DFT of x over a T -sized window.

Alternatively, its ACF can be derived from Eq. 1 if W = T
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(or W large). The initial period estimate requires a signal

segment of about 2T (see [14] for a more precise discussion).

Spectral estimation then needs a segment of T , so accurate

analysis of this simple scene requires a signal chunk of only

about 2T . If T is not a multiple of the sampling period, in-

terpolation techniques may be applied.

4.2. Periodic voice plus noise

If the observed signal x is the sum of a periodic signal s of pe-

riod T and a noise signal n, phase and amplitude uncertainties

prevent perfect estimation. However relatively accurate esti-

mates can be provided for the statistics of n and the distribu-
tion of s if T is known. Applying the ”periodic-aperiodic” de-

composition, we know that: n
−T

= x
−T

because s
−T

maps to

zero. It follows that the short-term power spectrum N
−T

(ω)t

can be accurately obtained from the observed signal.

On the other hand N
+T

(ω)t is inextricably confounded

with S(ω), and thus neither N(ω) nor S(ω) can be measured.

However if we suppose that the process that produces n has a

”smooth” spectrum, we can use N
−T

(ω) as an approxima-

tion of N
+T

(ω), and thus characterize the ”noisy” part of

the signal. Furthermore, N
+T

(ω) can be used to character-

ize the error incurred if S(ω) were approximated by X(ω).
More precisely, if the noise power follows a distribution for

which the mean is a sufficient statistic, we can use N
+T

(ω)
to parametrize the likelihood of S(ω) given the observation.

If T is estimated from x, the effect of estimation error

must be taken into account. This involves two steps: (a) de-

rive the expected distribution of T given a noisy observation

and (b) translate error on T in terms of error on N(ω)
−T

. The

likelihood function is adjusted accordingly. The model may

also handle variations over time of a periodic signal, e.g. am-

plitude variations [15].

4.3. Two periodic voices

Suppose that the observed x is the sum of two periodic sig-

nals s and s′ with periods T and T ′. The ”periodic-aperiodic

decomposition” can be extended to split x into four terms:

x
+T,+T ′

(t) = [x(t)+x(t−T )+x(t−T ′)+x(t−T−T ′)]/4

x
+T,−T ′

(t) = [x(t)+x(t−T )−x(t−T ′)−x(t−T−T ′)]/4

x
−T,+T ′

(t) = [x(t)−x(t−T )+x(t−T ′)−x(t−T−T ′)]/4

x
−T,−T ′

(t) = [x(t)−x(t−T )−x(t−T ′)+x(t−T−T ′)]/4 (8)

where x
+T,+T ′

(t) denotes x(t) filtered by a cascade of two

comb filters. Indeed the terms sum up to x:

x = x
+T,+T ′

+ x
+T,−T ′

+ x
−T,+T ′

+ x
−T,−T ′

(9)

and their powers sum up to that of x:

||x+T,+T ′
||t + ||x+T,−T ′

||t + ||x−T,+T ′
||t + ||x−T,−T ′

||t
= (||x||t + ||x||t−T + ||x||t−T ′ + ||x||t−T−T ′)/4. (10)

This decomposition is useful in because of how each term

depends on components of the mixture. The second term

x
+T,−T ′

depends only on s, and the third x
−T,+T ′

depends

only on s′. The fourth depends on neither, and it is zero if the

signals are perfectly periodic. The first term depends on both,

and represents power that cannot be assigned to either source

given the observation. Again, thanks to Parseval’s relation,

Eq. 10 applies also to power spectra.

It is interesting to note the duration of the interval that

supports this analysis. Initial F0 estimates require on the or-

der of 3T (supposing T > T ′). Spectral estimation then takes

on the order of 2T . Accurate analysis of the scene is thus

possible with a signal interval of only about 3T . We discuss

below what can be gained if a longer interval is available.

4.4. Two periodic voices with noise

Suppose now that x = s+ s′ +n, where s and s′ are periodic

sources with known periods T and T ′, and n is noise. The

previous decomposition can again be applied. The power of

the noise is split among the four coefficients; in particular

||x−T,−T ′ ||t is no longer zero. As in the single-voice-with-

noise case, this term can be used to estimate the amplitude

and spectrum of the noise. That allows us to parametrize the

likelihood of the sources given the observation.

5. GENERALIZING THE APPROACH

Similar techniques can be applied to a larger number of sources

(in a single channel), as well as to a larger number of chan-

nels (e.g. multiple microphones). A strength of the method

is that it requires short windows, and can thus track time-

varying signals. Typically a source (voice, instrument) may

go through intervals of stability, during which it is amenable

to accurate processing, and intervals of transition, during which

estimates are degraded. A reasonable strategy is to assign

stronger weight to information gathered during the former

than during the latter. Measures of unaccounted power (||x−T ||t,
||x−T,−T ′ ||t) can be used to locate islands of reliability.

Longer intervals may be used to enhance the analysis.

For example in the one-voice-plus-noise case, a frame of 3-

periods duration allows the decomposition of Eq. 8 to be

applied with T ′ = T . Among the four terms obtained, the

first, x
+T,+T

(t), implements a relatively narrow ”harmonic

sieve” tuned to T , while the other terms gather power that

does not pass the sieve. This can be understood in the spectral

domain: the transfer function associated with the first term

H
+T,+T

(ω) = cos4(ωT ) has relatively narrow peaks. Longer

periods of stability allow yet-sharper selectivity.
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6. DISCUSSION

This paper presented a framework for acoustic scene analysis

based on the harmonic structure of one or more sources. The

aim is to extract as much useful information as possible from

observations, subject to the fact that some information is lost

in the mixing. We assumed a single observable signal (single

microphone), but similar principles can be applied to the anal-

ysis of multichannel observations (multiple microphones).

Analysis can be performed on very short frames of data,

which is useful for tracking rapidly varying signals. In an

ideal situation (no noise, perfect periodicity over the analysis

frame), analysis produces an accurate but possibly incomplete

estimate of component spectra. In the presence of noise or

imperfect periodicity, it produces instead an estimate of the

distribution of target values conditional on the observation.

Power-based analysis offers an alternative to standard spec-

tral methods that involve an initial STFT applied to windowed

frames of data. The size and shape of the analysis window

are “nuisance parameters” that are hard to choose, given the

tradeoff between spectral and temporal resolution. Here, the

main parameter is the duration W of the integration window,

that determines the temporal stability of the analysis but not

its spectral resolution.

”Periodic-aperiodic” decompositions (Eqs. 4, 8) are anal-

ogous to a power spectrum in the sense that they obey a form

of Parseval’s relation (Eqs. 5, 10). They have the useful prop-

erty that they can isolate parts that do not depend on a source.

It has been argued that this is an essential trait of a good rep-

resentation for acoustic scene analysis [17].

A key premise to addressing the ”cocktail party problem”

is that mixing destroys information, and thus the problem can-

not be solved with full generality. Rather, one must rely on

regularity and redundancy of the sources or scene to form

models that can be constrained by the piecemeal information

that is derivable, sometimes with perfect accuracy, from the

observed signals. Bayesian methods provide a good frame-

work for this purpose, but they are usually applied to short-

term spectral representations. We suggest that they should be

applied to the representations that we have sketched out here.
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[15] A. de Cheveigné and A. Baskind, “F0 estimation of one

or several voices,” in Eurospeech, 2003, pp. 833–836.
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