
DOA ESTIMATION FOR MULTIPLE SPARSE SOURCES
WITH NORMALIZED OBSERVATION VECTOR CLUSTERING

Shoko Araki†‡ Hiroshi Sawada† Ryo Mukai† Shoji Makino†‡

† NTT Communication Science Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

‡ Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo-shi, Hokkaido 060-0814, Japan

Email: shoko@cslab.kecl.ntt.co.jp

ABSTRACT

This paper presents a new method for estimating the direction of
arrival (DOA) of source signals whose number N can exceed the
number of sensors M . Subspace based methods, e.g., the MUSIC
algorithm, have been widely studied, however, they are only appli-
cable when M > N . Another conventional independent component
analysis based method allows M ≥ N , however, it cannot be ap-
plied when M < N . By contrast, our new method can be applied
where the sources outnumber the sensors (i.e., an underdetermined
case M < N ) by assuming source sparseness. Our method can
cope with 2- or 3-dimensionally distributed sources with a 2- or 3-
dimensional sensor array. We obtained promising experimental re-
sults for 3 × 4, 3 × 5 and 4 × 5 (#sensors × #speech sources) in a
room (RT60= 120 ms).

1. INTRODUCTION

Direction of arrival (DOA) estimation is a basic and important tech-
nique in array signal processing [1, 2]. The DOA estimation of speech,
on which we focus in this paper, has many applications such as tele-
conference systems and automatic conference minutes generators.
Such applications usually face situations where more sources than
sensors are active simultaneously. We propose a new method for es-
timating DOA that can be applied even when the sources outnumber
the sensors.

The most widely used approaches for DOA estimation are sub-
space based methods, e.g., the MUSIC (MUltiple SIgnal Classifica-
tion) algorithm [3], and its variants. Because these methods need a
noise subspace, they require more sensors than sources M ≥ N +1,
that is they can be applied only when M > N .

Recently, a DOA estimation method based on independent com-
ponent analysis (ICA) has been proposed [4, 5]. It estimates DOAs
directly from the separation matrix estimated with ICA by utilizing
the fact that the separation matrix is related to the source mixing
process. Because this method is based on ICA, it allows cases where
M ≥ N . However, it still cannot be applied when M < N .

In order to cope with underdetermined cases where M < N , we
propose a new DOA estimation method by assuming source sparse-
ness. If the signals are assumed to be sufficiently sparse in the time-
frequency domain, we can assume that only one source is dominant
at a time-frequency point. Therefore, we can estimate information
about each source by collecting observation samples that appear to
belong to one of the sources. With our method, first we normalize
all the observations and cluster the normalized observation vectors.

As each cluster corresponds to an individual source, we can formu-
late the DOAs by using the cluster centroids and given sensor lo-
cations. We have already proposed a sparseness based blind source
separation algorithm with normalized observation vector clustering
[6]. In this paper, we show that we can also estimate the DOAs of
more sources than sensors with the same normalization and cluster-
ing method.

Some DOA estimation methods for M < N cases have already
been proposed [7–9]. The method described in [7] is based on source
sparseness. It clusters the phase difference of only two sensor obser-
vations, then estimates the DOA. In addition, [8] estimated the DOA
with the cumulants of observations by assuming the non-gaussianity
of sources, and utilizing a linear sensor array. These two methods
limit the DOA estimation ability on a 2-dimensional half-plane. The
authors of [9] utilized a triangular sensor array and clustered the
phase differences of each sensor pair by assuming source sparse-
ness. Their method expands the DOA estimation ability to an entire
2-dimensional plane. However, their approach still cannot handle 3-
dimensionally distributed sources. Moreover, their formulation as-
sumed a regular-triangle sensor array. They have to re-formulate
their method to use an array with another arrangement.

On the other hand, our newly proposed formulation is more
general: the DOA is given by the cluster centroids and the sen-
sor coordinates. Therefore, we can employ an arbitrary sensor ar-
rangement including a 3-dimensional arrangement, and cope with
3-dimensionally distributed sources.

Experimental results show that the new method succeeded in es-
timating the DOAs for M × N of 3 × 4, 3 × 5 and 4 × 5. Neither
the MUSIC algorithm nor the ICA based method can be used in such
situations. We also compare our method and MUSIC when M = 3
and N = 2. When sources were closely placed, the MUSIC algo-
rithm failed to estimate their DOAs, whereas the proposed method
still succeeded.

2. PROBLEM DESCRIPTION

2.1. Observation model

Suppose that sources s1, . . . , sN are convolutively mixed and ob-
served at M sensors

xj(t) =
∑N

i=1

∑
l hji(l) si(t − l), j =1, . . . , M, (1)

where hji(l) represents the impulse response from source i to sensor
j. In this paper, we especially consider a situation where the num-
ber of sources N can exceed the number of sensors M (M < N ).
Here we assume that the number of sources N is given or can be
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Fig. 1. (a) Far-field model, (b) definition of source location.

estimated. Our task is to estimate the directions of arrival (DOAs) of
N sources from the sensor observations without information about
sources si or impulse responses hji. We will formulate the DOA
estimation problem in Sec. 2.2.

As with most DOA estimation techniques, this paper employs a
time-frequency domain approach. Using a short-time Fourier trans-
form (STFT), the convolutive mixtures (1) can be converted to in-
stantaneous mixtures at each frequency f :

xj(f, τ) ≈ ∑N
k=1 hji(f)si(f, τ), (2)

or in vector notation,

x(f, τ) ≈ ∑N
i=1 hi(f)si(f, τ), (3)

where hji(f) is the frequency response from source i to sensor j,
si(f, τ) is the STFT of a source signal si, and τ is a time index. We
call x = [x1, . . . , xM ]T an observation vector and hi = [h1i, . . . ,
hMi]

T is a vector of the frequency responses from source si to all
sensors.

In the time-frequency domain, the sparseness of a source signal,
which has been widely employed for solving the underdetermined
problem [6, 7, 9–11], becomes prominent, if the source is colored
and non-stationary such as speech. When the signals are sufficiently
sparse, we can assume that the sources rarely overlap at each time-
frequency point, and (3) can be approximated as

x(f, τ) ≈ hk(f)sk(f, τ), k ∈ {1, · · · , N}, (4)

where sk(f, τ) is a dominant source at the time-frequency point
(f, τ). For instance this is true for speech signals in the time-frequency
domain [10, 11].

2.2. DOAs of source signals

Let us define the DOAs of sources more closely. Let dj and qi

be 3-dimensional vectors representing the locations of sensor j and
source i, respectively. We express the direction of source si as qi

||qi||
with a unit-norm. Here, sensor locations dj are given.

In order to estimate the DOAs of sources, we approximate the
frequency response hji(f) with a far-field model [Fig. 1(a)]:

hji(f) ≈ exp [j2πfc−1dT
j

qi

||qi|| ], (5)

where c is the propagation velocity of the signals. That is, we as-
sume that the frequency response depends only on the path differ-
ence dT

j
qi

||qi|| between a source i to origin O and a source i to a
sensor j [Fig. 1(a)]. When we consider the two sensors j and J , we
obtain the following expressions:

hji(f)

hJi(f)
≈ exp [j2πfc−1(dj − dJ)T qi

||qi|| ] (6)

= exp [j2πfc−1||dj − dJ || cos θjJ
i ]. (7)

These two equations show that we can estimate the DOA in two
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Fig. 2. Flow of proposed method

ways: the DOA qi
||qi|| with respect to a coordinate system, and the

angle cos θjJ
i with respect to a sensor pair j-J , [see Fig. 1(a)]. We

term the former qi
||qi|| an absolute DOA, and the latter cos θjJ

i a rel-
ative DOA. The previous methods with two sensors [7] or a linear
sensor array [8] can estimate only the relative DOAs. On the other
hand, in this paper, our goal is to estimate the absolute DOAs qi

||qi||
of sources from the all sensor observations x(f, τ). Using the az-
imuth θi and elevation φi [see Fig. 1(b)], the absolute DOAs qi

||qi||
can be written as

qi

||qi|| = [cos θi cos φi, sin θi cos φi, sin φi]
T . (8)

3. PROPOSED METHOD

This section explains our proposed DOA estimation method, which
is applicable when M < N . When the sparseness assumption (4)
holds, the observation vector x(f, τ) is a multiplication by an un-
known scalar sk of the frequency response hk(f) about a source sk

which is dominant at (f, τ). Moreover, remember that the frequency
response hk(f) includes the DOA information qk

||qk|| of source sk

[see (5)]. Therefore, if we can collect the observation samples that
appear to belong to one of the sources, we can estimate its DOA as
an expectation value.

Based on this idea, we cluster the observation vector x(f, τ) so
that each cluster corresponds to each source. Figure 2 shows the
flow of our method. To make x(f, τ) form clusters, first we need
normalizations of all the observations. Then we cluster the normal-
ized observation vectors x̄(f, τ) to gather the observation samples
that belong to one of the sources. Because each cluster corresponds
to an individual source, finally, we estimate the DOAs by using the
cluster centroids ck. We explain each step in detail in the following
subsections.

3.1. Normalization

In this step, we normalize all observation vectors x(f, τ) so that they
form clusters, each of which corresponds to an individual source.

First, we remove the inconstancy of the scalar sk(f, τ) in (4).
This can be normalized by taking the ratio of two observation com-
ponents: xj(f, τ)/xJ(f, τ) ≈ hjk(f, τ)/hJk(f, τ), which is mod-
eled as (6). Moreover, if we can normalize the frequency dependence
observed in the phase component of (6), we can handle all the fre-
quency components together and obtain enough data samples even if
we use short observations. The frequency dependence is normalized
by dividing the phase of xj(f, τ)/xJ(f, τ) by f .

Including the above normalizations, our normalization is per-
formed for the all components of x(f, τ) by selecting one of the
sensors J :

x̄j(f, τ) ← |xj(f, τ)| exp

[
j
arg[xj(f, τ)/xJ(f, τ)]

4fc−1dmax

]
(9)

where c is the propagation velocity and dmax is the maximum dis-
tance between the reference sensor J and a sensor ∀j ∈ {1, . . . , M}.
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The rationale for the frequency normalization 4fc−1dmax can be
found in the Appendix. Here, we keep the amplitudes at all sensors,
although this is not needed for DOA estimation. This information is
useful when we perform source localization, i.e., estimate the posi-
tions qi of sources, using a near-field model.

We also employ unit-norm normalization to handle the vectors
on a unit-hypersphere,

x̄(f, τ) ← x̄(f, τ) / ||x̄(f, τ)|| (10)

for x̄(f, τ) = [x̄1(f, τ), . . . , x̄M (f, τ)]T .
If sources are sparse, each component of the normalized obser-

vation vector is expressed as

x̄j(f, τ) =
1√
M

exp

[
j

π

2dmax
(dj − dJ)T qk

||qk||
]

(11)

=
1√
M

exp

[
j

π

2dmax
||dj − dJ || cos θjJ

k

]
, (12)

by using (4), (5), (9), and (10). We can see that the normalized
components x̄j(f, τ) keep the geometric information of sensors and
a source sk, which is dominant at (f, τ). Therefore, the normalized
vectors x̄(f, τ) form clusters based on the source geometry in the
clustering step.

3.2. Clustering

In this step, we find clusters C1, . . . , CN formed by all normalized
vectors x̄(f, τ). The centroid ck of a cluster Ck is calculated by

ck ← E[x̄(f, τ)]k, ck ← ck/||ck||, (13)

where E[·]k is a mean operator for the members of a cluster Ck. The
clustering criterion is to minimize the total sum J of the squared
distances between the cluster members and their centroid

J =
∑M

k=1 Jk, Jk =
∑

x̄∈Ck
||x̄ − ck||2. (14)

This minimization can be performed efficiently with the k-means
clustering algorithm [12].

3.3. DOA estimation

Because each cluster corresponds to an individual source, the cen-
troid ck represents the geometry of the source sk. Note that the
centroid gives an expectation value for the k-th source [see (13)].
From (11) and (12), the j-th component of the ck is expressed as

{ck}j ∝ E[x̄j(f, τ)]k

=
1√
M

exp

[
j

π

2dmax
(dj − dJ)T q̃k

||q̃k||
]

(15)

=
1√
M

exp

[
j

π

2dmax
||dj − dJ || cos θ̃jJ

k

]
. (16)

where q̃k
||q̃k|| and θ̃jJ

k are the estimated DOAs. When we use all the
components of the centroid ck, we can derive the following relation-
ship from (15),

D
q̃k

||q̃k|| =
2dmax

π
rk (17)

where D = [d1 − dJ , · · · ,dM − dJ ]T is a matrix of the sen-
sor locations and rk = [arg[{ck}1], · · · , arg[{ck}M ]]. Using the
Moore-Penrose pseudo-inverse, the absolute DOA is obtained as

q̃k

||q̃k|| =
2dmax

π
D+rk. (18)

If rank(D) ≥ 3, we can estimate the 3-dimensional absolute DOA.
Note that if we use a unit sensor array system [d1,d2,d3,d4] =
α[(0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T ] (α: a constant) and J =
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Fig. 3. Experimental setups with non-linear sensor arrays.

Table 1. Experimental results for M = 3, N = 4 (Setup 1),
Source s1 s2 s3 s4

MUSIC (each) 24◦ 117◦ 217◦ 311◦

Proposed (5 sec.) 25◦ 114◦ 214◦ 313◦

Proposed (1 sec.) 23◦ 112◦ 212◦ 318◦

1, then arg[{ck}1] ≈ 0 and q̃k
||q̃k|| =

r′
k

||r′
k
|| , where r′

k = [arg[{ck}2,

arg[{ck}3], arg[{ck}4]]
T . That is, we do not need D+, and DOA

q̃k
||q̃k|| can be obtained simply from r′

k.
Using j-th component of the centroid ck, we can also estimate

the relative DOA θjJ
k from (16) if needed:

cos θ̃jJ
k =

2dmax

π

arg [{ck}j ]

||dj − dJ || . (19)

4. EXPERIMENTAL RESULTS

We performed experiments in a reverberant condition. Observations
were made by following (1) with the impulse responses hji(l) mea-
sured in a room (Fig. 3) and 5-second English speech sources si(t)
sampled at 8 kHz. The frame size L for STFT was 512, and the
frame shift was 256 (= L/2).

We estimated the absolute DOAs qk
||qk|| with (18), and evaluated

them with the azimuth θk and the elevation φk [see (8)]. As the true
directions, we utilized the DOAs estimated by the MUSIC algorithm
when there was only one source signal. They will appear in the
tables with the label “MUSIC (each)”. We investigated eight speaker
combinations and averaged the results.

Table 1 shows the results for four sources with three sensors
(M = 3, N = 4), that were arranged non-linearly (Fig. 3 [Setup
1]). Here, all source heights were the same as the height of the sen-
sor array. Because all elevations φk are zero, only the results of
θk are shown in the Table 1. We can see that the DOAs estimated
with our proposed method were very close to the results of “MUSIC
(each)”. Even when we used only one second data for the DOA esti-
mation, we still obtained reasonable results as shown in Table 1. In a
more complicated situation where M = 3 and N = 5, the proposed
method estimated the DOAs very accurately as shown in Table 2.

We also applied our method to a 3-dimensional sensor arrange-
ment (Fig. 3 [Setup 2]). In this case, the sources had different heights,
and therefore, we estimated both azimuths θk and elevations φk.
Table 3 shows results for five sources with four sensors (M = 4,
N = 5). As regards θk, although the estimation error was some-
times greater than the result for M = 3, N = 4 (Table 1), we
still obtained reasonable results for such a complicated case. The
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Table 2. Experimental results for M = 3, N = 5 (Setup 1),
Source s1 s2 s3 s4 s5

MUSIC (each) 24◦ 117◦ 176◦ 217◦ 311◦

Proposed (5 sec.) 23◦ 112◦ 175◦ 218◦ 314◦

Table 3. Experimental results for M = 4, N = 5 (Setup 2),
Source s1 s2 s3 s4 s5

θ 31◦ 85◦ 133◦ 222◦ 302◦

MUSIC (each)
φ −26◦ 6◦ 30◦ 39◦ −8◦

θ 30◦ 79◦ 132◦ 221◦ 298◦

Proposed (5 sec.)
φ −22◦ 7◦ 28◦ 35◦ −9◦

elevation values φk were also very close to the true values, “MU-
SIC (each)”. We can say that our proposed method can be applied
to such a 3-dimensional DOA estimation and that it gives us fairly
precise DOAs.

To show the effectiveness of our proposed method even for a sit-
uation where the MUSIC algorithm can be applied, we performed
experiments for two-source three-sensor (Setup 1) cases with both
methods. Figure 4 shows the resolution of both methods, and Table 4
shows the estimated DOAs θk. Figure 4 (a) and (c) are example MU-
SIC spectra at a frequency f = 1844 Hz, and (b) and (d) are DOA
histograms for members of each cluster (the DOA of each member
can be calculated with (18) using x̄(f, τ) instead of the centroid ck).
When two sources were placed with a wide spacing [Fig. 4 (a) and
(b), and Table 4 “wide”], both MUSIC and the proposed method esti-
mated the directions well enough. In contrast, when the two sources
were close to each other [Fig. 4 (c) and (d), and Table 4 “close”],
MUSIC failed to estimate the two directions, whereas the proposed
method was still successful. We consider that our proposed method
with sparseness assumption has a high resolution, although this reso-
lution depends on the sparseness of the source signals and is affected
by the room reverberation condition.

5. CONCLUSION

We proposed a new DOA estimation method for cases where M <
N by assuming source sparseness. The method is based on the nor-
malization and clustering of the observation vectors. We obtained
promising experimental results for underdetermined cases in a re-
verberant condition. We also confirmed that our proposed method
has higher resolution for estimating the directions of sources than
the MUSIC algorithm.

We can also formulate the source localization, i.e., estimate the
positions qi of sources, using our proposed normalized observation
vector and a near-field model. We plan to investigate its performance
in the future.

Appendix

This appendix explains the rationale for the denominator of the
phase normalization in (9). The normalized observation vector com-
ponent can be written as (11) or (12). From the fact that∣∣∣(dj − dJ)T qk

||qk||

∣∣∣ =
∣∣∣||dj − dJ || cos θjJ

k

∣∣∣ ≤ dmax,

an inequality −π/2 ≤ arg[x̄j(f, τ)] ≤ π/2

holds. Due to the frequency normalization with 4fc−1dmax, the
phase is distributed effectively from −π/2 to π/2. This property is
also important for the distance measure (14), since |x̄− x̄′| increases
monotonically as | arg(x̄) − arg(x̄′)| increases.
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Fig. 4. Resolution of MUSIC [(a),(c)] and the proposed method
[(b),(d)]. (a)(b): wide setting (θ1=117◦, θ2=217◦), (c)(d): close set-
ting (θ1=132◦, θ2=154◦).

Table 4. Experimental results for M = 3, N = 2 (Setup 1),
wide close

Source s1 s2 s1 s2

MUSIC (each) 117◦ 217◦ 132◦ 154◦

Proposed (5 sec.) 114◦ 217◦ 128◦ 156◦

MUSIC (mix) 125◦ 217◦ 126◦ 345◦
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