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ABSTRACT

We present fast-converging adaptive blind channel identifica-
tion algorithms for acoustic room impulse responses. These
new algorithms exploit the fast-convergence of the improved
proportionate normalized least-mean-square (IPNLMS) algo-
rithm and address the problem of delay inherent in frequency
domain algorithms by employing the multi-delay filter (MDF)
structure. Simulation results for both speech and white Gaus-
sian noise show that the proposed algorithms outperform cur-
rent frequency domain blind channel estimation algorithms.

1. INTRODUCTION

Blind channel identification (BCI) for single-input multiple-
output (SIMO) systems is an important technique with exten-
sive applications in signal processing and communications.
The identified channel can be utilized, after inversion, to re-
move the degradation introduced by the propagating channel.
Techniques for BCI based upon second order statistics [1] [2]
and higher order statistics [3] have been studied. Multi-
channel identification techniques are increasingly popular.
The normalized multichannel frequency domain LMS (NM-
CFLMS) algorithm [4] has been shown to be effective in iden-
tifying room impulse responses which are of particular inter-
est in acoustic dereverberation. However, NMCFLMS lacks
robustness to additive noise and can suffer misconvergence
even in moderate noise conditions. This has been studied
in [5].

We propose fast-converging BCI algorithms which exploit
the quasi-sparse nature of acoustic impulse responses (AIRs).
In addition the proposed algorithms reduce the delay inherent
in frequency domain BCI approaches such as NMCFLMS [4].
Since acoustic impulse responses have leading zeros due to
bulk delay and the late reflections in AIRs have very little
energy, AIRs can be considered as quasi-sparse. This mo-
tivates us to employ proportionate adaptive algorithms such
that the convergence can be accelerated. The proposed im-
proved proportionate NMCFLMS (IPNMCFLMS) algorithm
exploits the fast convergence due to proportionality control
of the IPNLMS algorithm [6] while the proposed multichan-
nel multi-delay filter (MCMDF) algorithm benefits from the

frequent update of filter coefficients and the reduction in de-
lay due to the MDF structure [7]. The proposed improved
proportionate MCMDF (IPMCMDF) algorithm inherits fast-
convergence and reduction in delay from IPNMCFLMS and
MCMDF hence achieving better performance over previous
methods.

2. REVIEW OF THE NMCFLMS ALGORITHM
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Fig. 1. Relationship between input and output in a SIMO model.

With reference to Fig. 1 and defining s(n) and bi(n) as
the source signal and background noise respectively, the ith

channel output signal xi(n) is given by

xi(n) = Hi(n)s(n) + bi(n), i = 1, 2, . . . , M, (1)

where M is the number of channels while

xi(n)=[xi(n) xi(n − 1) . . . xi(n − L + 1)]T , (2)

hi(n)=[hi,0(n) hi,1(n) . . . hi,L−1(n)]T , (3)

Hi(n)=

⎡
⎢⎣

hi,0(n) · · · hi,L−1(n) · · · 0
...

. . .
...

. . .
...

0 · · · hi,0(n) · · · hi,L−1(n)

⎤
⎥⎦

L×(2L−1)

(4)

s(n)=[s(n) s(n − 1) . . . s(n − 2L + 2)]T , (5)

bi(n)=[bi(n) bi(n − 1) . . . bi(n − L + 1)]T , (6)

such that L is the length of the longest impulse response and
the superscript T denotes vector transposition. We assume
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that the additive noise on M channels is uncorrelated, i.e.,
E{bi(n)bj(n)} = 0 for i �= j, E{bi(n)bi(n − n′)} = 0 for
n �= n′, and E{bi(n)s(n)} = 0 where E{·} is defined as the
expectation operator. For channel identifiability [8], we also
assume that (i) the channel transfer function Hi(z) does not
contain any common zeros, and (ii) the autocorrelation matrix
of the source signal, Rss = E{s(n)sT (n)}, is full rank.

A blind multichannel system can be identified, in the ab-
sence of noise, using the cross-relationship between the ith

and jth channel outputs given, for i �= j, by [4]

xT
i (n)hj(n) = xT

j (n)hi(n), i, j = 1, . . . ,M. (7)

An a priori error exists if noise is present, or the channels are
estimated with error, given, for i �= j, by

eij(n) = xT
i (n)ĥj(n−1)−xT

j (n)ĥi(n−1), i, j = 1, . . . , M,
(8)

where ĥi(n) is the estimated ith channel impulse response.
Using (8), BCI algorithms such as NMCFLMS are derived by
minimizing the cost function J(n) =

∑M−1
i=1

∑M
j=i+1 e2

ij(n)

with respect to the estimated impulse response ĥi(n) for
i = 1, . . . , M. The NMCFLMS [4] algorithm is a
fast-converging and efficient algorithm for multichannel
frequency-domain BCI and is given, for each mth frame, by:

eij(m)=[eij(mL − L) . . . eij(mL + L − 1)]T , (9)

ε01ij (m)=F2LW01
2L×2Leij(m)

=W01
2L×2L ×

[Dxi(m)W10
2L×Lĥj(m) −Dxj (m)W10

2L×Lĥi(m)],(10)

Pi(m)=λPi(m − 1) + (1 − λ)

M∑
j=1,j �=i

D∗
xj

(m)Dxj (m), (11)

ĥ
10

i (m)= ĥ
10

i (m − 1) − ρ[Pi(m) + δI2L×2L]−1 ×
M∑

j=1

D∗
xj

(m)ε01ji (m), i = 1, . . . , M, (12)

where ∗ denotes complex conjugate, ρ is the step-size, λ

is the forgetting factor and δ is the regularization con-
stant. Defining IL×L, 0L×L, and FL as the identity, null
and Fourier matrices of dimension L × L respectively,

W10
2L×L = [IL×L 0L×L]T , W01

2L×2L =

[
0L×L 0L×L

0L×L IL×L

]
,

W10
2L×L = F2LW10

2L×LF−1
L , W01

2L×2L = F2LW01
2L×2LF−1

2L ,

ĥi(m) = FLĥi(m), ĥ
10

i (m) = F2L

[
ĥi(m)
0L×1

]
and Dxj (m) =

diag{F2L[xj(mL − L) . . . xj(mL + L − 1)]T }. In [5], the
direct path component of the estimated impulse response is
constrained in order to improve NMCFLMS’s robustness to
noise and, in a similar manner, we employ this constraint in
our proposed algorithms.

3. NEW ALGORITHMS FOR BCI

3.1. IPNMCFLMS ALGORITHM

We now formulate an improved proportionate NMCFLMS
(IPNMCFLMS) algorithm for BCI. The IPNLMS algo-

rithm [6] achieves fast convergence by updating each filter
coefficient with individual step-sizes proportional to the esti-
mated impulse response. It incorporates the proportionality
into NLMS using a controlling factor α. A diagonal step-size
control matrix Qi(m), for i = 1, . . . , M , is given by

Qi(m) = diag{qi,0(m) qi,1(m) . . . qi,L−1(m)}, (13)

qi,l(m) =
1 − α

2L
+ (1 + α)

|ĥi,l(m)|
2‖ĥi(m)‖1 + �

, (14)

where ‖.‖1 is the l1-norm operator for l = 0, 1, . . . , L− 1 and
� is a constant. Following the approach in [9] we update the
filter coefficients of NMCFLMS in the time domain by first
defining the matrix

G̃10
L×2L = W10

L×2LF−1
2L , (15)

where W10
L×2L = [IL×L 0L×L] . The IPNMCFLMS update

equation for BCI can be expressed as

ĥi(m) = ĥi(m − 1) − ρILQi(m)G̃10
L×2L ×

[Pi(m) + δIPI2L×2L]−1
M∑

j=1

D∗
xj

(m)ε01ji (m), (16)

where ρI is the step-size and δIP is the regularization constant.

3.2. MCMDF ALGORITHM

We next devise the multichannel multi-delay filter-
ing (MCMDF) algorithm for BCI. The MDF structure [7]
reduces the problem of delay in frequency domain algorithm
implementation by partitioning the adaptive filter of length
L into K blocks such that L = KN where N is the block
length. Let m be the frame index and we define input matrix
Xi(m) and a priori error eij(m) for i �= j:

Xi(m) = [xi(mN) . . .xi(mN + N − 1)], i = 1, 2, . . . , M,

eij(m) = Xi(m)ĥj(m − 1) − Xj(m)ĥi(m − 1)

= [eij(mN) . . . eij(mN + N − 1)]T . (17)

Defining k as the block index, the diagonal data matrix
Dxi(m) for channel i is

Dxi(m)=diag{F2NXi(m)},
Xi(m)=[xi(τ + N) xi(τ − N + 1) . . . xi(τ + N − 1)]T ,(18)

where τ = mN − kN . Note that the first element of the diag-
onal of Dxi(m) is arbitrary, but it is normally equal to the first
sample of the previous block k − 1 [10]. We now define the

frequency domain quantities: ĥi,k(m) = F2N

[
ĥi,k(m)
0N×1

]
,

eij(m) = F2N

[
0N×1

eij(m)

]
, W01

2N×2N =

[
0N×N 0N×N

0N×N IN×N

]
,

W10
2N×2N =

[
IN×N 0N×N

0N×N 0N×N

]
, G10

2N×2N =

F2NW10
2N×2NF−1

2N and G01
2N×2N = F2NW01

2N×2NF−1
2N ,

where ĥi,k(m) is the kth subfilter of the ith channel, for
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k = 0, . . . , K − 1 and i = 1, . . . , M . The MCMDF adaptive
algorithm for BCI is then given by:

eij(m) = G01
2N×2N

K−1∑
k=0

Dxi(m − k)ĥj,k(m − 1) −

G01
2N×2N

K−1∑
k=0

Dxj (m − k)ĥi,k(m − 1), (19)

Si(m) = λSi(m − 1) +

(1 − λ)

M∑
j=1,j �=i

D∗
xj

(m)Dxj (m), (20)

ĥi,k(m) = ĥi,k(m − 1) − β G10
2N×2N ×

[Si(m) + δMDF]−1
M∑

j=1

D∗
xj

(m − k)eji(m), (21)

where β is the step-size and 0 � λ < 1 is the forgetting
factor. Defining σ2

x as the input signal variance, Si(0) =
σ2

xi
/100 is the initialization [10] and δMDF is the regulariza-

tion constant which is set to one fifth of the total power over
all channels at the first frame [4].

3.3. IPMCMDF ALGORITHM

We additionally propose the improved proportionate multi-
channel MDF (IPMCMDF) algorithm for BCI which incorpo-
rates proportionate updates as in IPNMCFLMS whilst achiev-
ing reduced delay by exploiting the MCMDF approach. To
incorporate proportionality, we update the MCMDF filter co-
efficients in the time-domain similar to Section 3.1. In this
case, G̃10

N×2N is computed for each block k and hence is of di-
mension N × 2N . Moreover the partitioned control elements
of block k in channel i are defined, for k = 0, . . . , K − 1, as

qi,k(m) = [qi,kN (m) . . . qi,kN+N−1(m)], (22)

where each element in this block is determined by

qi,kN+r(m) =
1 − α

2L
+ (1 + α)

|ĥi,kN+r(m)|
2‖ĥi(m)‖1 + �

, (23)

while r = 0, 1, . . . , N − 1 is the tap-index for each of the K
blocks. The IPMCMDF update equation for the kth subfilter
of channel i is then given by

ĥi,k(m)= ĥi,k(m − 1) − βILQi,k(m)G̃10
N×2N ×

[Si(m) + δIPMDF]−1
M∑

j=1

D∗
xj

(m − k)eji(m),(24)

where βI is the step-size for IPMCMDF, δIPMDF is the regular-
ization constant and Qi,k(m) = diag{qi,k(m)}, while eji(m)

and Si(m) are computed using (19) and (20) respectively.

4. SIMULATIONS AND RESULTS

We now present simulation results to compare the perfor-
mance of IPNMCFLMS, MCMDF and IPMCMDF algo-
rithms for BCI against the NMCFLMS algorithm [4] in the

context of acoustic room impulse response identification. The
direct path constraint of [5] has been employed throughout to
achieve noise robustness. The dimensions of the room are
(5 × 4 × 3) m and impulse responses are generated using the
method of images [11] with reverberation time T60 = 0.1 s
which are then truncated to length L = 128. A linear micro-
phone array containing M = 5 microphones with uniform
separation d = 0.2 m is used. The source and the first micro-
phone are placed at (1.0, 1.5, 1.6) m and (2.0, 1.2, 1.6) m, re-
spectively. Input signal is either white Gaussian noise (WGN)
or a male speech signal while an uncorrelated zero-mean
additive WGN is added to achieve the SNR specified for
each experiment. The sampling frequency is 8 kHz and
the SNR is 20 dB unless otherwise specified. Defining
h = [hT

1 hT
2 . . . hT

M ]T , the SNR for this BCI application
is given [4] as SNR � 10 log10[σ

2
s‖h‖2/(Mσ2

b )] where σ2
s and

σ2
b are the signal and noise powers, respectively, while the fol-

lowing parameters are chosen for all simulations: α = −0.75,
λ = [1 − 1/(3L)]N , Si(0) = σ2

xi
/100 for MCMDF,

Si(0) = (1 − α)σ2
xi

/200 for IPMCMDF, δIP = (1−α)δ
2L

,

δIPMDF = (1−α)δMDF
2L

, ĥi(0) = [1 0 . . . 0]T /
√

M for
i = 1, . . . , M . The normalized projection misalignment
(NPM) [4] is used as performance measure and is given, for
frame m, by

NPM(m)=20 log10

(∥∥∥∥h− hT ĥ(m)

ĥT (m)ĥ(m)
ĥ(m)

∥∥∥∥/‖h‖) dB, (25)

where ‖.‖ is the l2 norm and ĥ(m) =

[ĥT
1 (m) ĥT

2 (m) . . . ĥT
M (m)]T . Figure 2 shows the varia-

tion in convergence with block-size N for MCMDF using
WGN input sequence. It can be seen that the convergence rate
increases for smaller N since the adaptive filter coefficients
are updated more frequently.

Figure 3 shows a comparison of convergence between
NMCFLMS, IPNMCFLMS, MCMDF and IPMCMDF us-
ing a WGN input sequence. The block-size for MCMDF
and IPMCMDF is N = 32 while the step-sizes for all al-
gorithms are adjusted such that they reach same asymptotic
NPM. This corresponds to ρ = 0.5, ρI = 0.4, β = 0.8 and
βI = 0.6. The MCMDF algorithm converges faster than NM-
CFLMS because the filter coefficients are being updated more
frequently due to the MDF structure. The IPNMCFLMS
and IPMCMDF algorithms exhibit even higher rate of con-
vergence compared to NMCFLMS and MCMDF due to the
exploitation of the quasi-sparse nature of AIRs. During con-
vergence, IPMCMDF achieves approximately 1 dB improve-
ment in NPM over IPNMCFLMS and approximately 5 dB
improvement over NMCFLMS.

Figure 4 shows an additional result using a male speech
input sequence with an SNR = 40 dB where step-sizes for
all algorithms are adjusted to achieve same asymptotic NPM
which correspond to ρ = 0.02, ρI = 0.12, β = 0.02 and
βI = 0.12. It can be seen that the relative performance of all
algorithms is similar to that obtained using WGN input with
IPMCMDF achieving the highest rate of convergence.
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Fig. 2. Variation of convergence with N for MCMDF.
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Fig. 3. Variation of NPM with WGN sequence input at SNR=20 dB.

5. CONCLUSION

We have developed IPNMCFLMS, MCMDF and IPMCMDF
algorithms for BCI. The IPNMCFLMS algorithm offers
fast convergence by exploiting proportionality control of
IPNLMS while the MCMDF algorithm benefits from frequent
update of filter coefficients due to its MDF structure. The
IPMCMDF algorithm has beneficial properties of both IP-
NMCFLMS and MCMDF. In addition, MCMDF and IPM-
CMDF offer a reduction in the delay inherent in frequency
domain BCI algorithms due to the MDF structure. Simula-
tion results show for both WGN and speech signal inputs, the
proposed algorithms offer improvement in NPM by approxi-
mately 2 to 5 dB over the NMCFLMS algorithm.
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