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ABSTRACT

Auditory scene segmentation is an important step in the process
of high-level semantic inference from audio data streams, and in
particular, a prerequisite for auditory scene categorization. In this
paper, we analyze the limits of previous works on auditory scene
segmentation, and then propose a novel method that, conceptu-
ally, is inspired by the ideas used in text and video scene seg-
mentation, and is based on an analysis of audio elements and key
audio elements, which can be seen as equivalents to the words
and keywords in a text document, respectively. Experiments
performed on 1.5 hours of audio data indicate that the proposed
approach is promising.

1. INTRODUCTION

Nowadays, more and more composite digital audio data appear
in various multimedia databases, either stand-alone (e.g. radio
broadcasts) or combined with other media (e.g. visual and/or
textual) into multimedia documents. As opposed to single-modal
audio (e.g. pure music or speech), composite audio usually con-
tains multiple audio modalities such as speech, music and vari-
ous audio effects, which are either mixed together or follow each
other in a sequence. Because most of the audio data streams
appearing in multimedia applications are composite, building a
system for content-based composite audio analysis is likely to
facilitate the management of audio data and support various
multimedia applications where this data plays a role.

A typical approach to content-based composite audio analysis
can be represented by the flowchart shown in Fig. 1 [1]. The
framework represents a generic process of audio content under-
standing, from low-level features, via mid-level content repre-
sentation, to high-level semantics. In this flow, the input audio
stream is first segmented into different audio elements such as
speech, music, various audio effects and any combination of
these. Then, the key audio elements are selected, being the audio
elements that are most characteristic for the semantics of the
analyzed audio data stream [1][2]. (Key) audio elements serve as
mid-level representation of audio content. Introducing this mid-
dle level enables us to divide the semantics inference into two
steps, each of which can be realized in a much more robust way
compared to one-step inference (i.e. inferring the semantics di-
rectly from low-level features). Then, the auditory scenes, which
are the temporal segments with coherent semantic content, are
detected and classified based on the (key) audio elements they
contain. For example, in [4], the audio elements such as ap-
plause, ball-hit, and whistling, are used to detect the highlights
in sports videos; and in movie indexing [1][3] humor and vio-
lence scenes are categorized by detecting the key audio elements
like laughter, gun-shot, and explosion. Further examples of pre-
vious works related to the components of the scheme in Fig.1

include speech/music classification [5][6], audio effects detec-
tion [7] and auditory scene classification [8].

Fig. 1. A typical approach to content-based composite audio analysis [1]

The least addressed of all components in Fig.1 is the module for
auditory scene segmentation. In fact, most of previous works on
audio classification either assume the auditory scenes are manu-
ally pre-segmented [3][8], or use simple techniques without util-
izing all the potential of the available audio information
[1][9][10]. In this paper, we analyze the drawbacks of the exist-
ing methods and propose a novel approach to auditory scene
segmentation based on the obtained audio element sequence.

The rest of the paper is organized as follows. Section 2 analyzes
the limits of the previous approaches and identifies the possibili-
ties for improving the auditory scene segmentation. Section 3
presents the proposed approach, which is then evaluated experi-
mentally in Section 4. Section 5 concludes the paper.

2. ANALYSIS OF RELATED WORK

In most previous works, auditory scenes were defined in the way
to coincide with audio segments characterized by consistent
low-level feature behavior. Such a definition served as a basis
for numerous approaches for audio segmentation in speech, mu-
sic and background noise [6][9][10]. For example, Venugopal
[10] presented a work to segment an audio stream in terms of
gender, speech, music and speaker, based on the features in-
cluding tonality, bandwidth, excitation patterns, tonal duration
and energy. Sundaram [9] presented a work on scene segmenta-
tion using low-level features, such as cepstral and cochlear de-
composition, combined with listener model and various time
scales. The definition of an auditory scene we apply in this paper,
however, is much broader and is an analogy to the concept of a
logical story unit [11]. That is, an auditory scene may consist of
multiple, semantically related audio elements. An example of
such an auditory scene is a humor scene consisting of several
segments of speech, laughter, cheer, and possibly also some
music.

In our previous work [1] we presented a simple scheme of audi-
tory scene segmentation based on the time interval between
consecutive key audio elements. Since key audio elements are
most characteristic for the semantics of the analyzed audio data
stream, only key audio elements are used for segmentation. As
shown in Fig.2 (a), two adjacent key audio elements are assumed
to be in the same auditory scene if the time interval between
them is sufficiently short. Clearly, the algorithm is quite simple
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and does not fully exploit the relationship between audio ele-
ments and auditory scenes.
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Fig.2 Illustration of previous approaches to auditory scene segmentation
based on key audio elements: (a) [1], (b) [2], (c) possible scheme to
investigate the relationship of key audio elements on a large scale

Then, in [2], we consider the semantic affinity between every
two contiguous key audio elements, as well as the time interval
between them, to locate the auditory scene boundaries. We in-
troduced semantic affinity as a measure for the possibility that
two key audio elements will appear together in the same auditory
scene. As Fig.2 (b) shows, an auditory scene boundary is found
between two audio element segments, if semantic affinity is low
and the separating time interval is large. However, it is a little
strict to base the detection of auditory scene boundaries on the
comparison of two subsequent key audio elements only. A more
intuitive approach would be to allow more flexibility in the or-
dering of key audio elements, as long as their mutual distance
remains acceptable, similar to some classical video scene seg-
mentation approaches [11][12]. As shown in Fig.2 (c), an ap-
proach in this direction would give the decision on the presence
of scene boundary at the observed time stamp based on investi-
gation of semantic affinity of (key) audio elements taken from a
broader range and surrounding this time stamp.

Moreover, the performance of the existing segmentation meth-
ods based on key audio elements strongly depends on the defini-
tion of a key audio element and the reliability of its detection.
Crisply defining key audio elements and detecting them in a
composite audio data stream may be rather difficult due to mul-
tiple superimposed audio modalities. Therefore, a more reliable
solution would be to work with general audio elements instead,
and for each element to compute a confidence that it can be con-
sidered a key audio element. Including this confidence value is
likely to contribute to increasing the robustness of the segmenta-
tion scheme.

3. THE PROPOSED APPROACH

Based on our previous work [1][2] and the discussion from the
previous section we propose in this section a novel approach to
auditory scene segmentation, in which we draw analogies to text
and video scene segmentation, and exploit the confidence values
related to key audio elements. .

Fig. 3 shows an example audio element sequence obtained from
an audio stream (the detailed algorithms are described in [1][2],
both for the supervised and unsupervised approach), where each
temporal segment (a block in the figure) belongs to an audio
element and where different classes of audio elements are repre-

sented by different grayscales. Each time stamp separating two
audio segments can be considered a potential auditory scene
boundary. The confidence for having an auditory scene boundary
at the observed time stamp is obtained by computing the seman-
tic affinity between the audio segments surrounding the observed
time stamp.
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Fig.3 Illustration of the proposed approaches to audio element based
auditory scene segmentation

In the following section, we first define a new measure for se-
mantic affinity between audio segments. Then, a new segmenta-
tion scheme is presented in which the proposed affinity measure
is used to compute the confidence of having an auditory scene
boundary at a given time stamp in a composite audio stream.

3.1 Semantic Affinity Measure

The new definition of the semantic affinity is based on the fol-
lowing assumptions:

i) there is a high affinity between two segments if the corre-
sponding audio elements usually occur together;

ii) the larger the time interval between two audio element seg-
ments, the lower their affinity;

iii) the higher the confidence that an audio element is a key
audio element, the more important role this element will
play in the auditory scene segmentation.

In view of the above, the semantic affinity between the segments
si and sj can be computed as a function consisting of three com-
ponents, each of which reflects one of the assumptions stated
above:
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Here, ei and ej are the audio element identities of si and sj; while
Pei and Pej are the probabilities (confidences) that audio ele-
ments ei and ej are key audio elements. T(si,sj) is the time in-
terval between the audio segment si and sj; and Tm is a scaling
factor, which is set to 16 seconds in our experiments, following
the discussions on human memory limit [9] and our previous
works [1][2]. Exponential expression in (1) is inspired by the
content coherence computation formula introduced in [12]. Co(ei,
ej) measures the co-occurrence between two audio elements, ei

and ej, in the entire audio stream. This value is computed in the
following 3 steps:

1) First, we calculate Dij, the average time interval between au-
dio elements ei and ej. This value is obtained by investigating the
co-occurrences of the observed audio elements in the input audio
stream. For each audio segment belonging to audio element ei,
the nearest segment of ej is located, and then Dij is the average
interval of each pair of ei and ej.

2) As an analogy to Dij, we also calculate Dji. It is clear that Dij

may be not equal to Dji, in some cases.

3) We compute the co-occurrence value as
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where �D is the average of all Dij and Dji. The choice for an ex-
ponential formula in (2) was made to keep the influence of seg-
ment co-occurrence on the overall semantic affinity comparable
with the influence of the time interval between the segments (1).

Having the affinity (1), we can now compute the confidence of
having an auditory scene boundary at the time stamp t simply by
averaging the affinity values computed for all pairs of segments
si and sj surrounding the t, that is,
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Here, Lt and Rt are the ranges of audio segments to the left and
right from the time stamp t, respectively, which we set both to 16
seconds.

The issue related to confidence computation that requires careful
consideration is the definition of the weighting coefficient W in
(3). Weighting is necessary, since the number of audio segment
pairs in (3) may be quite different for different observed time
stamps. One possible approach would be to set W equal to the
number of considered audio segment pairs. However, in this way,
the importance of different audio elements is not taken into ac-
count, and the confidence will decrease too much when there are
many short segments in the left and right segment range, even if
the co-occurrence between the corresponding audio elements is
high. Another possibility would be to define the weighting
formula, which takes into account the importance of each audio
segment, for instance, as
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However, our experiments showed that in the case that the audio
elements around a potential boundary are all with low impor-
tance, the weight value (4) will be too small and the resulting
confidence therefore too large. This will clearly result in missed
true scene boundaries.

To deal with the weighting problem, we slightly revise the affin-
ity measure (1) by using the pairs of audio frames instead of
audio segments. An audio frame can be defined as an elementary
part of an audio data stream having a fixed length of, in our case,
0.5 seconds. Reducing the analysis to frame pairs has as the
consequence that the numbers of analysis units in both left and
right range remain constant for all t. If we replace the segment
pairs (si, sj) by frame pairs (fm, fm) in (1), the new formula for
semantic affinity becomes

nm
mnm

ee
TffT

nmnm PPeeeCoffA /),(),(),( −= (5)

which leads to the new formula for the boundary confidence:
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where Nl and Nr are the frame numbers in the left and right range
of a potential boundary, respectively; and, em and en are the audio
element identities of the frames fm and fn, respectively. In our
experiments, each frame is set 0.5 seconds, since it is the basic
unit in our audio element discovery [2]. Thus, we have 32 frames
on each side.

3.2 Segmentation Scheme

Using (6), a confidence curve can be obtained, as illustrated in
Fig. 4. Auditory scenes can be obtained simply by searching for
local minima of the curve. In our approach, we first smooth the
curve by using a median filter and then find the auditory scene
boundaries with the following criterion.

ThtCtCtCtCtC <−<+< )();1()();1()( (7)

where the first two conditions guarantee a local valley; while the
last condition prevents high valleys from being detected. The
threshold Th is set experimentally as �a+�a, where �a and �a are
the mean and standard deviation of the curve, respectively.

S*
1

S*
4

S*
3

S*
2

S*
5

Th

Th2

Fig.4 An example of the smoothed confidence curve and the auditory
scene segmentation scheme

The obtained confidence curve is likely to contain long se-
quences of low confidence values, as shown by the segment S*

3

in Fig. 4. These sequences typically consist of the background
(noise) audio elements which are weakly related to each other
and also have low probabilities of being the key audio elements.
As such a sequence clearly has different properties than an audi-
tory scene that complies with the definition we introduced before,
we choose to isolate these sequences by including all consecu-
tive audio segments with low affinity values into a separate
auditory scene. Detecting the boundaries of such scenes is ana-
logical to detecting pauses in speech. Inspired by this, we set the
corresponding threshold by using a similar approach to back-
ground noise level detection in speech analysis [13].

4. EVALUATION

In this section, the proposed approach is evaluated on the basis
of the results we obtained by analyzing a 1.5-hour composite
audio stream extracted from the video of ‘59th Annual Golden
Globe Awards Ceremony’. The sound track contains an abun-
dance of different audio elements, including speech, music and
various audio effects like laughter, applause, and different com-
binations of these.

The audio stream is in 16 KHz, 16-bit and mono channel format,
and is divided into frames of 25ms with 50% overlap for feature
extraction. Following our previous work [2], a sliding window of
one second with 0.5 seconds overlap is selected as the basic unit
in audio element discovery, and spectral clustering with a self-
tuning strategy is employed to decompose the audio stream into
audio elements. Moreover, four heuristic importance indicators
[2], including one occurrence frequency related and three dura-
tion related, are used to measure the probability that an audio
element is a key audio element. The method results in 11 audio
elements, which are listed in Table 1 together with a description
of their content, and the confidence of being key audio elements.
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It can be seen that some audio types are represented by several
audio elements (like speech), but this is quite understandable in
view of large variations one can expect in the properties across
the segments containing the same audio type in general audio
data streams.

Table 1. The list of obtained audio elements with description

No. Description Conf. No. Description Conf.
1 speech1 0.380 6 music with speech 0.510
2 speech2 0.150 7 applause 0.959
3 speech3 0.001 8 applause with speech 0.553
4 Music 0.366 9 applause with dense-music 0.820
5 Noise 0.470 10 applause with light-music1 0.880

11 applause with light-music2 0.544

In the process of creating the ground truth we observed that the
award ceremony basically consists of a series of different events,
like when the host announces the nominees and the winner, or
when the winner approaches the stage while the audience is ap-
plauding. In view of this, and with help of a panel of unbiased
persons, we selected the true auditory scene boundaries at the
break points between different events. Moreover, we also an-
notated a number of ‘probable boundaries’ at places where the
presence of a true boundary is unclear. For example, the turn
between the played ‘nominated movies’ when a host announces
the nominees, can be seen as a probable boundary. In total, we
obtained 96 true boundaries and 60 probable boundaries.

In the experiments, a detected boundary is associated with anno-
tated boundary if they are mutually to each other. Table 2 shows
the evaluation results of the proposed approach, where different
approach variants and different test configurations are compared.
The table lists the recall of ‘ground-truth’ (R1) and ‘probable’
boundaries (R2) for different boundary shifts (where the notation
“<n” and “+n” indicates that the boundaries are detected with
the shift of less or more than n seconds, respectively, from the
corresponding true boundary), and the corresponding false
alarms (FA).

Table 2. The results of the auditory scene segmentation, comparing with
different approach variants and different configurations

R1(out
of 96

R2(out
of 60

<3 <6 <9 <12 +12 FA

Frame [Prob.] 72 36 62 20 8 7 11 12
Frame (0, 1) 60 23 46 20 8 5 4 11
Frame (1, 1) 72 29 25 31 21 10 14 25
Seg + W1 71 35 38 21 13 8 27 25
Seg + W2 70 37 43 22 18 11 13 43

The approach variants compared in Table 2 are (in the order of
appearance) three variants of the frame-based approach (6), and
two variants of the segment-based approach (3). The variants of
the frame-based approach differ from each other in the way the
key audio elements are defined. In the variant ‘Frame [Prob.]’,
the entire value range of probabilities is used, while the variant
‘Frame (0,1)’ works with crisp definitions of key audio elements
(audio elements 7-11 in Table 1 are selected as key audio ele-
ments based on [2], and their probabilities are set to 1 while
others are set to 0). The third variant, ‘Frame (1,1)’, considers all
obtained audio element as key elements (all probabilities set to
1). The first segment-based variant ‘Seg+W1’ works with the
weight W set as the total number of audio segment pairs, while
in the variant ‘Seg+W2’, W is set according to (4).

The results show that the approach variant Frame [Prob.] has the
best recall and the smallest average boundary shift. It recalls 72
out of 96 ‘ground-truth’ boundaries and 36 out of 60 ‘probable’
boundaries, and the average boundary shift is about 4.6s. Al-
though ‘Frame (1,1)’, ‘Seg+W1’ and ‘Seg+W2’ have similar
recall values, their boundary shifts are much larger and they also
result in more false alarms. Clearly, these detection schemes do
not result in reliable confidence curves, which lead to many
missed and misplaced scene boundaries.

5. CONCLUSION

Auditory scene segmentation is a non-trivial step towards high-
level semantic inference of composite audio. In this paper, we
analyze the limits of existing methods, and propose a novel ap-
proach to auditory scene segmentation based on audio elements
contained therein. The approach not only investigates a broad
range of audio elements surrounding an evaluated potential
boundary, but also is flexible in dealing with audio elements with
definitive or probabilistic decision. Evaluations performed on
1.5 hour of diverse test data indicate that the proposed approach
is promising.

We see a number of possibilities to further improve the proposed
approach. For example, pauses between different events might
be further used to refine the auditory scene boundary.
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