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ABSTRACT

A method for segmenting musical audio with a hierarchical timbre
model is introduced. New evidence is presented to show that mu-
sic segmentation can be recast as clustering of timbre features, and
a new clustering algorithm is described. A prototype thumbnail-
generating application is described and evaluated. Experimental re-
sults are given, including comparison of machine and human seg-
mentations.

1. INTRODUCTION

This paper describes an approach to extracting the overall structure
of a piece of music directly from an audio recording. Knowledge
of this structure has various useful practical applications, for exam-
ple: music summarisation, such as the thumbnail-generating applica-
tion presented here; automatic section-by-section alignment of audio
tracks to aid retrieval algorithms; the development of features for use
in audio editing or synchronization to video, such as ‘jump to start
of next section’, ‘double-click to select current phrase’, etc.

Previous research [1, 2] has explored partial extraction of high-
level musical structure by a self-similarity search for repeated sec-
tions. With such methods only some sections are identified and la-
belled, the pairwise similarity between all analysis frames within a
track has to be evaluated, which is computationally expensive, and
the choice of distance metrics and similarity thresholds is somewhat
ad hoc. More recent work [3, 4] extends this approach to extract the
entire structure of musical tracks by adding a set of heuristics based
on an estimation of the beat, bar and phrase-length of the piece in
question, and also by making some extremely limiting assumptions
about the nature of the structure being sought, which hold only for
conventional pop music. The approach in [5] is less restrictive, using
self-similarity to find an initial set of candidate segment boundaries
and segment templates which are refined by unsupervised clustering.

Our work [6] recasts the problem of extracting structure as one
purely of clustering suitable features. These correspond perceptually
to the overall timbre of the music over two different time-scales, and
the result of our clustering procedure is a hierarchical segmentation
by timbre. This naturally yields a structural analysis of the entire
audio track, and also allows the novel use of a range of unsupervised
clustering algorithms. The absence of restrictive assumptions, and
the perceptually meaningful nature of the features, means that the
method can usefully be applied to a wide range of musical styles.
Timbre features have been widely used for supervised genre classi-
fication (for a recent summary see [7]). Our work aims to extend
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this to the unsupervised identification of sections of similar overall
timbre within a single audio track.

The organisation of the rest of this paper is as follows: section
2 describes the hierarchical model and the features used; section 3
justifies the use of clustering for segmentation and introduces a new
clustering algorithm; section 4 illustrates some output segmentations
and gives an evaluation of the performance of our approach in rela-
tion to some manual segmentations; section 5 describes an applica-
tion that generates music thumbnails from machine segmentations;
section 6 outlines further work.

2. A HIERARCHICAL MODEL OF TIMBRE

Traditional musicological approaches to structure extraction place
little weight on timbre as a structural dimension, depending heavily
on repetition, both exact and approximate, as a structural principle.
On the other hand, while studies from the audio analysis perspective
[8, 9] have successfully clustered short frames into a given number
of timbre-types, no high-level structure emerges. Although short se-
quences of neighbouring frames may be assigned to the same timbre-
type, the overall timbre changes frequently during the course of any
section of significant length. Our approach builds on previous work
by drawing on the following insights. Although timbre changes from
frame to frame, the distribution of timbre-types remains fairly con-
sistent over the course of structural segments, and can be used to
characterise segment-types (typically ‘chorus’, ‘verse’, etc.). Dis-
cernible timbre-types (loosely corresponding to specific combina-
tions of instruments) are nonetheless shared between segment-types.
This suggests the following model:

For a given track, we divide the space of possible timbres into
N timbre-types {q1, ..., qN}, each of which generates timbre fea-
tures �x according to a Gaussian distribution bj(x) = P (x|qj) =
N [x, µj , U ], where the covariance matrix U is shared by all timbre-
types. We model the sequence of timbre features through the track
with an N -state Hidden Markov Model [10], where the hidden states
correspond to the N timbre-types, i.e. we assume fixed transition
probabilities between timbre-types {aij}, where aij = P (qj(t +
1)|qi(t)). Given the trained HMM parameters, we can then decode
the most likely sequence of timbre-types Q̂ = {q(1), ..., q(T )} to
have generated the features. We assume there are a fixed number M
of segment-types {s1, ..., sM}, where each segment-type generates
timbre-types according to a fixed distribution hm(j) = P (qj |sm).
Note that the characteristic distribution hm corresponds to the mix-
ture weights for a Gaussian mixture model for each segment-type:

P (x|sm) =
NX

j=1

hmP (x|qj) =
NX

j=1

hmN [x, µj , U ] (1)
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We find both these characteristic distributions, and the most likely
corresponding segmentation, by clustering histograms of timbre-types
from Q̂, as described below.

We extract timbre features by computing constant-Q spectra at
1
8

th-octave resolution over large overlapping analysis windows, us-
ing a window size three times the hop size. We use a hop equal to
the beat length of the music (typically 300-400ms), as estimated by
a beat-tracking algorithm [11]. A resolution of one beat is appropri-
ate because this is the natural granularity for musical segmentation.
The spectra are normalised and subjected to Principal Component
Analysis. Finally we combine the first 20 PCA components and the
normalised envelope to yield 21-dimensional feature vectors. We
train a 40-state HMM on the entire sequence of feature vectors for a
given track, with a single Gaussian output distribution for each state,
and a single covariance matrix tied across all states. We then Viterbi-
decode the features using the trained model. The resulting state se-
quence gives the most likely sequence of assignments for each beat
of the music to one of 40 possible timbre-types.

To capture timbre variation over a longer time-scale, we his-
togram the decoded sequence of timbre-types over a sliding window
of 7 beats in length, and then normalise the resulting histograms.
We then estimate the characteristic mixture of timbre-types for each
segment by clustering the histograms into M clusters. The refer-
ence histograms for each cluster give distributions of timbre-types
{hm} and the cluster assignments give the corresponding segmen-
tation S = {s(1), ..., s(T )}, where s(t) gives the segment-type as-
signment for frame t. In [6] we found that our segmentations var-
ied significantly with the number of clusters M chosen. Using the
algorithm presented here, however, redundant clusters are left un-
occupied and so we can set M to some abitrary large number (we
frequently use M = 10).

3. SEGMENTATION AS A CLUSTERING PROBLEM

Because clustering throws away all information about temporal con-
tiguity, it will not necessarily produce a meaningful segmentation.
If different segment-types emit mutually exclusive sets of timbre-
types, then clustering should work easily as a segmentation method,
but if segment-types have many timbre-types in common, it is likely
to fail. More generally, clustering histograms will only produce a
usable segmentation if the histograms belonging to frames within
segments of a given type do genuinely fall into clusters.

For audio tracks where a manual “groundtruth” segmentation
S0 = {s0(1), ..., s0(T )} is available, we can test this with the fol-
lowing simple experiment. We create a sequence of normalised his-
tograms {y1, ..., yT } of timbre-types from the audio, as described
above. We calculate reference histograms {ĥm} for each segment-
type by taking the mean over histograms corresponding to all frames
assigned to that segment-type in the manual segmentation: ĥm =
P

{t:s0(t)=m} yt

|{t:s0(t)=m}|
. We then make segment-type assignments Ŝ =

{ŝ(1), ..., ŝ(T )} for each frame according to the closest reference
histogram: ŝ(t) = argminmd(yt, ĥm), where d(yt, ĥm) is a sim-
ple Euclidean distance. The degree of agreement between Ŝ and S0

gives a clear indication of whether or not the histograms are gen-
uinely clustered by segment-type, while Ŝ itself gives a reasonable
‘upper bound’ on the quality of segmentation we can get by cluster-
ing.

Although audio tracks with corresponding human segmentations
are not available in sufficient numbers to allow large-scale tests, re-
sults of this experiment on a small test set of 14 pop songs, con-
taining some 196 hand-labelled segments, strongly support the idea

that segmentation can be reduced to clustering of timbre-type his-
tograms. Typically the the overall stucture of the segmentation is
well preserved, as illustrated in Figure 1(a), with only short runs of
misclassified frames, which can easily be identified and corrected,
and small differences in the position of segment boundaries. The
mean number of correctly classified frames per segment was 87%,
over all segments in the test set. Significantly, we have also observed
the same clustering of timbre features by segment-type directly in the
feature vectors themselves, when averaged over a moving window of
the same length as our histogram window. The effectiveness of seg-
mentation by clustering timbre features is therefore not dependent
on our particular approach via histograms of decoded timbre-types,
but rather depends simply on modelling the dynamic evolution of
timbre over a suitable time-scale.

While segmentation by clustering timbre is not a perfect ana-
logue of human segmentation, it clearly has the potential to produce
results in many cases that are meaningful in musical terms. Sim-
ple clustering techniques, however, are not able to find the reference
histograms. We explored a variety of clustering methods within a
Bayesian framework in [6, 12]. We have also had good results with
the following adaptation of soft k-means clustering:

Initialization. Set M reference histograms {hm} to random val-
ues. Set β = β0.
Loop while β ≥ βfinal

Assignment step. Calculate the responsibilities of each
reference histogram for each data histogram:

rm(t) =
exp(−βdKL(hm, y(t))P

m′ exp(−βdKL(hm′ , y(t)))
(2)

where dKL(hm, y(t)) is a symmetrised Kullback-
Leibler divergence.
Assign each data histogram to a reference histogram:

s(t) = argmaxmrm(t) (3)

Adjust responsibilities by a term expressing local qual-
ity of current segmentation:

r′m(t) = rm(t)exp(−λnm(t)) (4)

where nm(t) measures the number of non-matching
cluster assignments in the neighbourhood of
y(t). More precisely, nm(t) = B − Am(t)
where B defines the size of the neighbour-
hood, Am(t) = |{t′ ∈ N(t) : s(t′) = m}|
is the number of matching assignments, and
N(t) = {t′ : t − (B − 1)/2 ≤ t′ ≤ t + (B − 1)/2}.

Reassign each data histogram:

s(t) = argmaxmr′m(t) (5)

Update step. Adjust the reference histograms:

hm =

P
t
r′m(t)y(t)P
t r′m(t)

(6)

Repeat assignment and update steps a fixed number of
times or until the assignments do not change.

Set β = αβ.
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This incorporates a simple duration prior, reflecting our prefer-
ence for neighbouring frames to be clustered together, defined by
a neighbourhood size B and a weighting parameter λ, and a de-
creasing inverse-temperature parameter β. We use experimentally
determined values of B = 41, λ = 0.02, β0 = 100, α = 0.7 and
βfinal = 0.1. Some segmentations produced by this algorithm are
given in Figure 1(b), showing how the output is largely independent
of the value chosen for M .
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Fig. 1. Segmentations of a pop song

4. EVALUATION

If our intention is to imitate human judgement then the significant
measures are perceptual: do we hear something change at segment
boundaries? do segments of the same type sound similar? etc. In
the case of popular music, recent research1 suggests that different

1Personal communication from M. Bruderer, Technical Univer-
sity of Eindhoven.

listeners share a consistent view of where the major segment bound-
aries fall, and we can therefore reasonably construct quantitative
tests against a human “groundtruth”. Figure 2(a) gives an idea of
how well groundtruth segments are reproduced in machine segmen-
tations of our small test set, using measures of boundaries missed m
and segments fragmented f developed in [6], and showing a modest
improvement on our earlier results. The distances of found bound-
aries from the nearest groundtruth boundary are shown in Figure
2(b).
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Fig. 2. Evaluation measures over test set: (a) 1 − f against 1 − m
(loosely ‘precision’ vs ‘recall’) (b) Accuracy of machine segment
boundaries

We can improve segmentations in a post-processing phase by
noting that conventional popular music follows an extremely simple
structure, dictated by the verse-chorus form of the lyrics and very
predictable phrase-lengths, so that segments are simple multiples of
a basic eight-bar phrase. These lengths are quite precisely observed
in performance, and hence in the audio signal, due to the ubiquitous
use of machine-generated click-tracks or drum loops in the record-
ing studio. This implies an extremely strong constraint on segment
lengths, leading to a simple optimisation problem which we imple-
ment as a brute-force search for the best-fitting basic phrase-length.
Given machine-produced segment boundaries at times {t0, ..., tL}

we define a distortion measure z =
PL−1

i=1 (t̂i(u, d) − ti)
2 + d2,

where t̂i(u, d) = d + u.round( ti−d

u
) is the corrected position of ti

to match a fixed phrase-length u and an offset d, representing any
silence or unmeasured music at the very start of the track. We find
optimal values for {t̂i} by minimising z over small non-negative
values of d and a range of values of u close to half of the median
segment length. A post-processed segmentation is shown in Figure
1(c).

Although the segmentations produced by timbre clustering will
not always agree with human judgement, it should be noted that there
are applications which can perfectly well use machine segmentations
that do not reflect a typical human notion of musical structure. These
include both some of the practical applications mentioned in sec-
tion 1, and musicological applications, such as the structural analysis
of less familiar musical repertoires, in which traditional approaches
break down.

5. A THUMBNAIL-GENERATING APPLICATION

In contrast to the partial segmentations extracted by self-similarity
searching, the clustering approach automatically yields a complete
segmentation of the supplied audio track. The better musical overview
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provided by this complete segmentation allows for the easy imple-
mentation of an application to generate representative musical ‘thumb-
nails’ of tracks, and we can get excellent results even with a very
cheap heuristic to identify a representative segment-type from a ma-
chine segmentation. We first count segments to find the most fre-
quently occurring segment-type(s), excluding any very short seg-
ments. If there is a tie for first place, we select the segment-type
with the highest mean energy: this favours stronger sections, such
as choruses, over equally frequent weaker ones, such as verses. We
then pick the second segment of the chosen type, as an occurrence
of a musical section towards the middle of a track is often more rep-
resentative of the piece as a whole than one at the very beginning or
end.

When run on our test set, this extracted thumbnails of between
10 and 40 seconds in length, which in 12 out of 14 cases corre-
sponded to chorus sections in the human groundtruths. Figure 3
shows precision and recall figures for these thumbnails in relation to
the closest corresponding chorus segments in the groundtruth. Note
that the precision is excellent, reflecting the fact that the thumbnails
consist almost entirely of chorus sections. The recall is more vari-
able, because some of the chosen thumbnail segments contain only
part of the chorus: this is not a disadvantage for thumbnailing pur-
poses, however, since the thumbnail lengths are adequate to give a
representative idea of the music. According to the measure used by
[13] for their GenThumb system, our thumbnails for an enlarged test
set of 34 songs scored 0.34 on a scale from 0 (good) to 5 (bad),
compared to their result of 1.0.
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Fig. 3. Precision and recall of thumbnails in relation to groundtruth
chorus sections

6. CONCLUSIONS

The method described in sections 2 and 3 produces segmentations
of audio tracks that in many cases correspond closely to a human
judgement of musical structure. In contrast to previous work, we are
able to produce a complete segmentation of each track by clustering
without prior knowledge of the number of segment-types present. A
thumbnail-generating application based on our segmentation method
produces excellent thumbnails of popular music, in most cases cor-
responding to parts of the chorus, easily outperforming a comparable
system. Finally, a by-product of our approach is the calculation of an
individual GMM modelling timbre features for each segment-type in
a given track.

Future work includes refinement of our thumbnail-generating
method over a much larger data set, full integration of beat-tracking
into the processing chain, and direct modelling of expected segment
durations with a musicologically-informed prior (as opposed to the
weak priors, simply favouring segments that are not too short, de-
scribed here and in [12]).
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