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ABSTRACT

This paper demonstrates the importance of temporal sequences for
passage-level music information retrieval. A number of audio anal-
ysis problems are solved successfully by using models that throw
away the temporal sequence data. This paper suggests that we do
not have this luxury when we consider a more difficult problem: that
is finding musically similar passages within a narrow range of musi-
cal styles or within a single musical piece. Our results demonstrate
a significant improvement in performance for audio similarity mea-
sures using temporal sequences of features, and we show that quan-
tizing the features to string-based representations also performs well,
thus admitting efficient implementations based on string matching.

1. OVERVIEW

This paper describes methods for efficiently assessing musical sim-
ilarity. Our goal is to perform music retrieval, a temporal matching
problem, with the same ease that search engines retrieve text on the
world-wide web. This paper addresses the issues inherent in tempo-
ral matching of musical signals, and describes approaches that are
amenable to fast hashing techniques.

There is a range of modeling techniques for describing and find-
ing musical matches. Audio fingerprinting tools [8] find the most
salient portions of the musical signal and use the most detailed mod-
els to then look for exact matches over time. The text equivalent is
looking for the words “Four score and seven years ago” to identify
Lincoln’s Gettysburg address. Genre-recognition efforts [19], artist
recognition [6], musical key identification [12], and speaker identi-
fication [14] use much more general models such as histograms or
probability densities of acoustic features. These so-called bag-of-
feature models ignore the temporal ordering inherent in the signal.
The textual equivalent would use the word frequencies of a para-
graph of text to identify the document as a 19th century speech.

This paper describes models with an intermediate level of detail
so we can find musical passages that are similar to a requested song
based on sequential harmony information. In our study, we consider
passages to be equivalent if a human listener judges them similar,
even if they are acoustically distinct. An example application is the
retrieval of all the thematic repeats (recurring melodies) in classical
works or popular music tracks, while being robust to changes in the
lyrics, instrumentation, tempo, rhythm, chord voicings and so forth.
The applications of such similarity methods are far-reaching, and
have immediate relevance to music browsing, computational musi-
cology, audio thumbnailing, music structure identification and audio
synthesis by musaicing [18].
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Fig. 1. Overview of the audio feature extraction, temporal modeling
and evaluation of quantized and continuous features. Section num-
bers refer to the text.

We measure the performance of the algorithms in this paper
by identifying repeated sections of a song. It is difficult to estab-
lish a ground truth for melodic repetition, especially with popular
works. A value judgment needs to be made on whether repetitions
are perceptually distinct or not. We restricted use of the popular mu-
sic ground truth to those repeated melodic segments that occurred
within the chorus sections of the works. This is because the instru-
mentation in popular music is often not established in first verse,
thus repeats of the verse melodic phrases are subject to more acous-
tic variation than repeats of melodic materials in the choruses. Using
a broader definition of repeats will lower our absolute performance,
but we do not think it changes our conclusions.

This paper continues with a description of our method for gen-
erating quantized features for audio, similarity matching and evalua-
tion in section 2; we present empirical results in section 3, and draw
conclusions in section 4.

2. METHOD

Figure 1 gives an overview of the techniques we use in this paper. We
make a distinction between conventional methods that use continu-
ous variables (and their quantized approximation) and the discrete
or symbolic representations amenable to hashing approaches. The
subsections that follow talk about the acoustic features we use, how
we quantize the analog data to form a symbolic representation, and
how we perform matching in the continuous and symbolic domains.
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2.1. Feature extraction

We investigated two audio representations in this work. LFCC (log-
frequency cepstral coefficients) is a simplification of MFCC (mel-
frequency cepstral coefficients) that is used to represent timbre in
speech recognition and some music tasks [11]. The chromagram rep-
resentation captures the musical qualities of the sound by collapsing
notes across octaves.

We extract features using 375ms windows every 100ms. We
used a constant-Q power spectrum [4] with 1/12th octave resolu-
tion, aligned with and corresponding to notes in western tonal mu-
sic. Each element of this spectrum is compressed to approximate
loudness perception using a logarithm. We collapse the 86-D spec-
trum to a low-dimensional representation using one of two methods.
We approximate the shape of the spectrum in LFCC with a discrete
cosine transform, in the same way that MFCC works to reduce the
dimensionality of the auditory spectrum. We collapse each note in
the chromagram representation to the base octave, A1–G#2 (55Hz–
104Hz), to give an octave-independent measure of the harmonicity
of the music.

2.2. Matched Filter

The matched filter is a linear operator for matching a waveform.
Whether we do this in the waveform or the cepstral domain, a matched
filter looks for an exact match over the given temporal window. The
disadvantage of the matched filter is that we can not expect it to find
an exact match with human variation, especially as we look at longer
windows.

2.3. Dynamic Time Warping

Dynamtic time warping (DTW) is the conventional solution to the
tempo-variation problem [5]. Given two different temporal wave-
forms, DTW finds the time course that generates the best match be-
tween the two signals and returns the corresponding matching errors.
This computation is expensive [16].

2.4. Vector quantization

Vector quantization (VQ) has been successfully employed in a wide-
range of applications in automatic speech recognition and music in-
formation retrieval—aside from passage-level music retrieval which
is the subject of our study. In this work we do not use VQ with a
small quantization interval to find a nearly exact representation of
the original signal: instead we are using VQ to convert the signal
into a string of relatively small set of symbols for which text tools
can be used for processing.

We train vector quantization (VQ) models using unsupervised
learning over a fixed third of the training data. Four K-means mod-
els with 8, 16, 32 and 64 clusters generate sequences of cluster
indices using nearest-cluster assignment; each feature vector is as-
signed to the nearest of K cluster centers using Euclidean distance.
We group the sequence of cluster assignments into short-term win-
dows with durations between 0.5s and 4s and a hop size of 0.1s. For
each work in the data set, each windowed VQ sequence was repre-
sented in a database as fixed-length string using the base-64 ASCII
encoding. The VQ strings are a new feature with the same dimen-
sionality as the window length used to produce them.

2.5. Exact string matching

A discrete equivalent to a matched filter is an exact string compar-
ison. (While the string comparison is exact, the result is an ap-
proximate match because of quantization.) When quantizing a low-
dimensional signal we can talk about neighboring symbols and we
expect some errors are more acceptable than others. But in high
dimensions, the curse of dimensionality means that all errors are
equally likely [3]. Because of the small number of symbols we are
using, we do not expect that exact-string matching to produce very
robust results: false positives will be higher.

2.6. String-edit distance

The string edit distance is a good approximation to DTW for dis-
crete symbols. We compute similarity for strings of states using the
Levenshtein distance metric, or string edit distance, which counts
the minimum number of insertions and deletions (indels) and sub-
stitutions (swaps or replacements) required to make a query string
match the target string. The Levenshtein distance that we use treats
all substitutions as equally erroneous.

The Levenshtein distance is the minimum number of insertions,
deletions and swaps required to make a test sequence into a query
sequence. For example, lev(abc,abc)= 0, lev(abc,abbc)= 1, and
lev(abc,cba)= 2. Efficient computation of the Levenshtein distance
is the subject of much research across computational disciplines, and
has been explored in great detail for applications such as biological
sequence comparison and text-based information retrieval [10, 16].
In most applications, a dynamic-programming algorithm finds the
minimum possible distance, with implementations being worst-case
polynomial order 2 with respect to the string length and linear with
respect to the number of strings in the database. Exact string match-
ing by hash table lookup, in contrast, has computational complexity
on the order of constant time with respect to the number of strings in
the database.

The string-edit distance only approximates the continuous DTW
distance, since the discrete symbols are only an approximation to the
exact sound, and the Levenshtein metric does not take into account
which symbols are easily confused. There are, however, versions of
the Levenshtein distance that incorporate non-uniform penalties for
swaps [16].

2.7. VQ State Histogram

We use a histogram of the symbols within the matching window as
an analogue to the bags of frames approach. We count the number
of times each VQ state is found in the matching window. This repre-
sentation approximates a distribution of the states, with weightings
calculated from the occupancies in the match window.

2.8. Indicator String

Our primary motivation is to find a means of scalable audio-similarity
matching for music applications with a large number of documents.
In pursuit of this goal, we recognize that a possible implementa-
tion is a hash-table lookup over the VQ strings. However, our target
task consists of repetitions of melodic segments subject to variations
in timing, timbre, pitch voicing, instrumentation, rhythmic content
and lyrics (voice content) due to natural variation in musical perfor-
mance. Thus, we expect that melodic repetitions will not result in
literal string repetitions, but we must consider temporal re-orderings
(swaps), insertions and deletions.
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We desire a method to represent strings where we collapse such
likely confusions within the string representation itself, rather than
by a similarity computation at query time, which is computationally
expensive. To this end, we made a new feature consisting of the set
of unqiue state labels that occurred in each VQ string ordered deter-
ministically by alphabetical ordering of cluster labels. For example,
we represent the length 10 string (zzaaabbzbc) by the indicator func-
tion (abcz), as is the sequence (zcbcaczcbca).

Exact matches in this representation are invariant to temporal
ordering of the VQ strings, thus temporal information is eliminated
in our indicator function representation.

3. RESULTS

3.1. Data

In order to permit evaluation over contrasting musical styles, we
collected two sets of data. The first was a corpus of classical mu-
sic works performed on a real piano and recorded in a reasonably
reverberation-free acoustic space. Human performances of three
classical works by Bach and Beethoven were recorded into a MIDI
file via a Clavinova and played back on a Yamaha Disklavier, an
electronically-driven acoustic piano. Each performance was then
marked up for repeated melodic content using an audio editor. The
pieces were selected for their considerable use of repetition.

The second dataset consisted of seven popular music tracks with
markup for melodic repetition provided by the MPEG-7 Audio group
[9]. Each repeat of a melody was indicated by its start time. The
classical and popular music data were marked up into a total of 68
repeat segments. We generated all possible pairs of ground-truth
query/result segments for each song; i.e. Cn

2 combinations for n re-
peated instances of a given melody, in our experiments there were
183 repeats in the dataset.

3.2. Evaluation by results rank

Figure 2 shows the raw-matching similarity as calculated on one
piece using the matched-filter approach. There is a strong diago-
nal component indicating that each segment of the sound is a good
match for itself. There are five copies of the same chorus in this
piece. Within each box, there is a strong diagonal match, indicating
that this portion of the song (time along the x-axis) matches another
portion (time along the y-axis) of the song.

We evaluate each of our algorithms by measuring the average
rank of each query. Each window in a repeated section of the song is
used as a query to find similar sections in the rest of the song. Each
query produces distances, dependent on the algorithm being tested,
for the entire song, and we sort and rank these distances looking to
measure the rank of the correct answers. The absolute closest match
for each query is always with itself—we do not try to remove these.

For each window in a repeated section, we record the rank of
the appropriate window in each of the other repeated sections. The
appropriate window in each repeated section is calculated by linear
interpolation from the beginning and end of each section (because
each repeat is not played at the same rate.) If there are 3 repeats of
a section in a song, each 10 seconds long, and we are using 1 sec-
ond matching windows, then there will be 90 valid queries per repeat
(10 − 1)/0.1, or 183 queries total. There are 3 correct answers per
query (one for each repeat, including itself) and the best ranks in a
slightly broadened window (+/- 1 frame) around each “correct” posi-
tion are averaged to get the score per query. The 183 query rankings
are summarized by their mean.

Fig. 2. Intra-song matched-filter temporal similarity matrix: dark
pixels correspond to windows of the song that match the repeat
within a 30-frame window. The five repeated sections are indicated
on the lower-triangular portion matrix with boxes.
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Fig. 3. Mean retrieval performance, as measured by average query
rank, of LFCC and chromagram features.

Figure 3 shows the results of matched filter retrieval for the con-
tinuous features with window lengths of 1–40 frames. Here, the
chromagram features have significantly higher mean rank than the
LFCC features, the standard deviation is also lower for the chroma-
gram features. This result justifies our choice of chromagram fea-
tures for the next experiment.

Figure 4 compares the performance of the string features and
the continuous features. The string-edit distance performed the best,
with the lowest mean rank. The histogram VQ score is signifi-
cantly worse than the string-edit distance, indicating that the ‘bag-
of-frames’ approach is not appropriate for this task. The indicator
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Fig. 4. Mean retrieval performance for the symbolic features: string-
edit distance, histograms and indicator functions. For reference, the
performance of the continuous chromagram features from Figure 3
are shown at the front and back of the plot.

function shows similar performance to the histogram.
The indicator function is, in essence, a quantized histogram and

performs similar to the histogram except in two cases. For short
window lengths, with a large number of VQ states the decrease in
performance is due to (the natural) correlations between successive
frames of the data. When the windows are short, we expect to see
most of the positions occupied by the same state. The indicator func-
tion for that state is fixed at one, while the histogram can grow to re-
flect the correlation. In the second case, the window length is much
greater than the number of states, so the histogram does a better job
of representing the multiple hits per state.

4. CONCLUSIONS

We have demonstrated the importance of temporal features in a music-
similarity task. We looked at several different forms of musical rep-
resentation and distance measures. We showed that temporal queries
were more effective at retrieving musically similar segments of our
music library. We are encouraged that string-based methods work so
well, and we now wish to study efficient methods to perform efficient
string matching so we can apply our ideas to today’s million-song li-
braries.
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