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ABSTRACT

We consider source enumeration and identification in the con-

text of monitoring the cooling circuit of a pressurized-water-reactor

(PWR) nuclear plant. We employ a linear instantaneous-mixture

to describe the system. We use the Gerschgorin radii of the trans-
formed covariance matrix of the data to detect the number of sources.

In particular, we illustrate the advantage of employing the boot-

strap in a scenario where no or little a priori knowledge is avail-

able on the statistical properties of the measured data. A specific
denoising procedure is also applied to the data to alleviate the ef-

fect of small variations of the noise power over the sensors, and

allow a more accurate source separation. The results show the po-

tential of both Gerschgorin-based detection and the bootstrap in
practice.

1. PROBLEM FORMULATION

We plan a non-destructive assessment of individual physical vari-
ables and their effect on the behavior of the cooling process in a

nuclear power plant. As part of this assessment, a number of mea-

surements is conducted around the cooling circuit, without direct

access to the coolant (water). Three major steps compose our anal-
ysis: 1) a simple but representative model of the measurements is

established, 2) the number of latent signals is identified, and 3) the

signals of interest are estimated. In the following, we summarize

these steps.

We have p narrowband latent signals measured simultaneously
by a set of M sensors. The source signals correspond to the phys-

ical quantities to be monitored, which are mainly the temperature,

pressure and flow of the water. We therefore predict 2 to 3 indepen-

dent major sources in the system, given that the water temperature

and pressure can be strongly correlated. Yet, for our blind anal-
ysis, the number of sources p is assumed unknown and is to be

estimated and validated. The number of sensors M is much larger

than the number of sources p. The modulation and conditioning of

the sources are conducted in a narrowband framework.

Although the most precise modeling of the cooling circuit (as
most processes in a nuclear plant) introduces convolutive mixtures,

we approximate the behavior of our system by an instantaneous-

mixture linear model, as a trade-off between precision and com-

putational complexity. The size of the measured data sample is
therefore defined to partially corroborate this assumption, i.e., a

large M and a large number of collected snapshots, L. Hence, the
received signal vector at instant t is modeled as

x(t) = As(t) + n(t), t = 1, . . . , L (1)

where A is the (M × p)-dimensional mixing matrix, s(t) is the p-

dimensional vector of the sources, and n(t) is the M -dimensional

vector of sensor noise. In the sequel, A and s(t) satisfy the usual

rank and parameter identifiability conditions.

The sources and the noise are assumed to be uncorrelated and

their respective distributions are unknown. The data covariance
matrix is given by

R = E

n
x(t)xH(t)

o
= ARsA

H + σ
2
I (2)

where (.)H denotes Hermitian transpose, E(.) is expectation, Rs =
E
˘
s(t)sH(t)

¯
is the covariance matrix of the sources, and σ2 is

the ideal power of the noise.

Depending on the combination of measured physical quanti-

ties, the technology of the particular sensors is variable. In ad-

dition, they are not necessarily located in a homogeneous pattern

around the process, so that the most representative information is
collected. Moreover, given the relatively large values of M and L,

it appears that a uniform calibration of all the sensors over the total

duration of the measurement is very difficult. Although the mea-

surements are pre-processed to level the power of the noise, some

residual perturbation may appear from one sensor to another.

When standard source detection methods are employed in such

a scenario, their performance can degrade significantly due to the
variation of the eigenvalues of R. The quality of estimation of the

signal subspace and its dimension based solely on these eigenval-

ues shows a threshold effect, with respect to the variation of the

Signal-to-Noise Ratio (SNR), and the Worst-Noise-Power Ratio
(WNPR). Figure 1 shows the Mean-Square Error (MSE) of the co-

sine of the angle between the estimated and ideal signal subspace

as defined in [1], in terms of SNR and WNPR. It is clear that be-

yond a certain threshold value of SNR or WNPR, the separation of
the signal subspace is not possible from the ordered eigenvalues of

R. In what follows, instead of relying on the ordered eigenvalues,

we will use ordered subspace projectors (Gerschgorin radii) which

are more robust to small perturbations of the noise power over the
sensors.
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Fig. 1. Simulated MSE of cos(γ), γ being the angle between the

estimated and ideal signal subspace, with a Vandermonde-type A,

M = 10, and P = 2.

2. DATA SAMPLE AND PRE-PROCESSING

The data sample of interest is collected and formatted by Elec-

tricité de France (EDF), from its Nogent-sur-Seine site. The col-

lected data is of size M = 142 by L = 3 × 105. The data are

sampled above the Nyquist rate, at a period of 1 min. The sensor
outputs are correlated and have the same general shape over time.

As an example, the output of sensor #113 is illustrated in Fig. 2.
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Fig. 2. Output of sensor #113.

Two different operation modes of the power plant can be eas-
ily identified. First, between t = 0 and t = 105, a steady-
state mode, where the measurements are mostly stationary around

their nominal value, and second, between t = 1.5 × 105 and

t = 3 × 105, a network-steered mode, where the measurements

are non-stationary and strongly vary with the load on the network.
In this analysis, we are interested only in the steady-state opera-

tion, and thus limit the sample size to L = 105.

Note that other segments are visible. These are also discarded

from our analysis. They correspond to irrelevant situations, such

as an interrupted measurement due to the opening of the reactor’s

heart, or constant measured values due to a likely dysfunction of
the sensors.

The collected data of interest are further cleaned from short

constant segments and outlier points, and then tested for stationar-
ity. Depending on the application, the data can also be whitened

and centered.

3. SOURCE NUMBER DETECTION

If the contribution of the M -th (last) array element is suppressed,
a unitary transformed covariance matrix R is obtained from the

original covariance matrix R [2].

The first M − 1 Gerschgorin radii of the transformed matrix

R, denoted ρm, m = 1, . . . , M −1, in ascending order of magni-
tude, are the basis for the separation between the signal and noise

subspaces, instead of the ordered eigenvalues of R, since ideally

these radii satisfy the following [2]:

ρ1≥ρ2 ≥. . .≥ ρp≥ρp+1 = ρp+2 = . . .=ρM−1 =0 (3)

where the first p elements, ρ1, . . . , ρp, correspond to the signal
subspace. In practice, due to the finite data length, the sample

covariance matrix R̂ is used, leading to radii ρ̂m, m = 1, . . . , M−
1. From (3), it can be deduced that estimation of the number of
sources p can be achieved by checking simultaneously for zero the

Gerschgorin radii ρ̂m, m = p + 1, . . . , M − 1, corresponding to

the noise subspace.

One way to automatically make a decision on the correct num-

ber of sources is to apply an appropriate information criterion. Due
to its high robustness to small noise-power perturbations over the

sensors, the variant of MDL of [3], labeled NU-MDL, can be em-

ployed in our scenario. The limitation of NU-MDL however, is

that it is specifically derived for the stochastic Gaussian case. If
Gaussianity of the data is not verified, combined with small sam-

ples and a low SNR, the performance of the criterion is expected

to degrade significantly.

As an alternative to NU-MDL, a sequential hypothesis test

(SHT) is formulated in [5] to statistically detect the smallest radii
corresponding to the candidate noise subspace. To this end, the

following two test statistics can be employed with different perfor-

mance levels

T1q =
M−1X

m=q+1

ρ̂
2
m (4)

T2q =

 
1

M − 1 − q

M−1X
m=q+1

ρ̂m

!
−

 
M−1Y

m=q+1

ρ̂
1

M−1−q
m

!
(5)

for q = 0, . . . , M − 2.

Note that no reference is made to the ordered eigenvalues of the

covariance matrix R.

For an arbitrary or unknown distribution of the measured data,

or for non-asymptotic scenarios, the bootstrap is employed to es-
timate the null distribution of the test statistics (4) and (5)[6, 5].

The principle of the bootstrap is that the data sample represents an

empirical estimate of the true distribution. Thus, resampling from

this estimate creates bootstrap data sets which are used to conduct
inference. Because of their robustness, it is convenient to apply

the above bootstrap-based detectors to our data set, as no a priori
knowledge on its statistical characteristics is available.

Given the b-th bootstrap resample of the data, denoted x�
b(t),

for t = 1, . . . , L and b = 1, . . . , B, the estimate of the empirical
distribution of the test statistics under the null can be obtained by

T̂ H

q (b) = T �
q (b)−Tq, where Tq is the test statistics evaluated from

the data x(t), while T �
q (b) is the test statistics evaluated from the

resample x�
b(t) [6, 7]. For a given level of significance α, when

no sources are present (global null), the probability of correctly

deciding that p̂ = 0 must be maintained at 1 − α.

It is worth mentioning that numerical results [3, 5] showed
a satisfactory performance of Gerschgorin-based detectors with

WNPR values beyond 10, whereas conventional eigenvalue-based

detectors fail for WNPR even less than 2.

4. BLIND IDENTIFICATION OF THE SOURCES

An efficient control of the cooling circuit requires an individual
monitoring of the measured physical variables. In order to be able
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to act on each component separately, the latter must be observed

with sufficient accuracy, considering that the cooling water is not

directly accessible. Our analysis therefore involves the application
of blind source separation algorithms to the data. We employed

three different methods. These are: JADE [8], SOBI [9], and

FastICA [10]. JADE is based on the whitening and joint diago-

nalization of fourth-order cumulant matrices (non-Gaussian data).
Based on the same joint diagonalization principle, SOBI requires

that the sources have different non-zero spectral components and

uses shifted correlations of the data. FastICA maximizes the non-

Gaussianity of the marginal densities of the whitened data, using
a fixed-point iterative procedure instead of more complex gradient

descent methods.

All the aforementioned methods incorporate data whitening
as a first step. This operation supposes the knowledge of the ideal

noise power σ2 in (1). If the SNR is high enough to considerably

reduce the effect of noise, the above source separation methods

will not be strongly affected by the noise nonuniformity. If the
power perturbations over the sensors are very small, an average σ2

can be easily estimated through the eigen-decomposition (or sin-

gular decomposition) of R. Otherwise, the lack of whitening will

require the matrices of the contrast function to be symmetrized.
For JADE and SOBI for example, this will invoke the use of some

non-orthogonal joint diagonalization technique at a higher compu-

tational cost.

From the development of [2, 5], we can use the same subspace

separation criterion, i.e., the ordered Gerschgorin radii of (3), to

denoise the system by estimating the perturbed noise powers. Sim-

ilarly to the derivation of NU-MDL and the bootstrap-based SHT,
this estimation is conducted at a cost of discarding one sensor.

Given the previously estimated number of sources p̂, denote by

En the ((M − 1)× (M − 1− p̂))-dimensional basis made of the
eigenvectors spanning the noise subspace. These eigenvectors are

obtained from the reduced-data sample covariance matrix, R̂M ,

and correspond to the radii ρm, m = p + 1, . . . , M − 1. Also

denote the m-th column of R̂M by r̂m, for m = 1, . . . , M − 1.

Next, note that the vector r̂m−σ2
mim is completely noise-free and

characterizes only the sources, where im is given as

im(k) =

j
1 for k = m;
0 else

(6)

and σ2
m denotes the perturbed noise power as measured on the m-

th sensor.

Exploiting the principle of orthogonality between the signal

and noise subspaces, we can easily verify that ideally, we have

σ̂
2
m = arg min

σ2
m

n`
r̂m − σ

2
mim

´H
EnE

H
n

`
r̂m − σ

2
mim

´o
(7)

and the solution for σ̂2
m follows straightforward, for m = 1, . . . , M−

1.

With the estimated M − 1 noise powers, arranged in a vector

q̂M , a noise-free reduced-data covariance matrix can be deduced

as

R̃M = R̂M − Q̂M (8)

where Q̂M = diag {q̂M}.

The noise-free covariance matrix R̃M can then be used di-
rectly with the conventional source separation algorithms.

Similarly to [3], the total number of sensors can be used to

yield M different estimates of each noise power, and averaging
over the M estimates resulting in a higher accuracy.
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Fig. 3. Sample eigenvalues and Gerschgorin radii.

L (×1000)

6 9 12 15 18 21 24 27 31
MDL 15 15 15 15 15 15 15 15 15

NU-MDL 4 4 4 4 7 7 7 7 7
T1 2 2 2 2 3 3 3 3 3
T2 2 2 2 3 3 3 3 3 3

Table 1. Estimated number of sources

5. EXPERIMENTAL RESULTS

As a first step, the number of sources is estimated using MDL,

NU-MDL and the bootstrap SHT, both with T1 and T2 of (4) and
(5), respectively. In our example, the number of sensors used for

this estimation is limited to 15 (#103 through #118) to reduce

the computational load (recall that the complexity associated with

the eigen-decomposition of R̂ is of the order O(M3)). The test

significance level is α = 5%, whereas the number of bootstrap

resamples is set to B = 3000.

Fig. 3 shows the ordered eigenvalues and Gerschgorin radii.

Note that we have a strongly dominating eigenvalue, which trans-

lates to a large Gerschgorin radius, although the transformation re-
duces the magnitude dispersion. Hence, in our relatively high SNR

case, we expect the detectors to yield a small number of sources.

It should be kept in mind however, that the dominating source can

possibly mask the smaller sources. At the same time, because of
the poor clustering of the smallest eigenvalues, the information

criteria can typically over-model the system [11].

Application of the detectors (25 independent trials) results in

the estimates shown in Table 1. The accuracy of the detection im-

proves with an increasing sample size L. The Gerschgorin-based

criteria outperform the conventional MDL. Despite the high SNR,
the main reason for the failure of MDL is the non-Gaussianity of

the embedded sources, which are thus strongly mismodeled by the

informative part of MDL. The non-Gaussianity of the sources af-

fects the NU-MDL in the same negative way. The bootstrap detec-
tors on the other hand are more suitable for unknown distributions

of the data. In addition, determination of the signal and noise sub-

space dimensions is carried-out through the ordered Gerschgorin

radii rather than the ordered eigenvalues, thus reducing the pos-

sibility of masking smaller sources. The result is more sensible,
irrespective of the sample size L. Despite the increased compu-

tational complexity, this result validates the relevance of the boot-

strap in practice, especially for off-line analysis.

Upon determination of the order of the model, blind source

separation is applied to the total data sample. All three methods,

i.e., JADE, SOBI and FastICA, provide almost identical results (up
to a rotation transformation). This result supports the linear model

of (1). The separation methods are applied to the data both directly

and after estimation of the perturbed noise powers, following (7).

Given the relatively high SNR, the results in both cases are very
close, therefore only the results after denoising are presented for

conciseness. It is worth mentioning however, that if the SNR were

low, prior estimation of the noise powers would significantly im-

prove the results. Although the quality of estimation of the signal
and noise subspace is dependent on the quality of estimation of the
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Fig. 4. Separated sources using: (a) SOBI, (b) JADE, and (c) FastICA.

Gerschgorin radii ρm, m = 1, . . . , M − 1, the denoising step of

(8) can only improve the overall result, by significantly reducing
the loading due to noise on the diagonal of R.

The spectral content of the signals is variable with time and

allows the use of shifted correlation matrices for SOBI. This illus-
trates that for the size of the data, the information provided by its

second-order moment is sufficient for the synthesis of the embed-

ded sources. The non-Guassianity of the data is also well exploited

as illustrated by the performance of JADE and FastICA.

The obtained sources are mostly non-Gaussian, in conformity

with the initial assumptions. The first source shows small fluctu-

ations and some impulsive bursts. It is somehow heavytailed. In
the steady-state operation mode, it is likely to correspond to the

variation of the temperature/pressure of the cooling water. The

second source is nearly Gaussian. It is likely to correspond to an

internally-generated perturbation, which is rather independent of
the variation of the physical quantities of interest. The third source

is multi-modal and shows progressive variations which likely cor-

respond to the flow of the cooling water.
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Fig. 5. Histogram of the magnitudes of the estimated sources.

6. CONCLUSION

A linear instantaneous-mixture has been successfully employed to
model the cooling process in one of EDF’s power plants. The boot-

strap, through Gerschgorin-based detection criteria, is applied to

the measured data and yields conclusive results. Denoising is ap-

plied to alleviate the effect of small variations of the noise power
from one sensor to another and allow an accurate source identifi-

cation. The results show the power of the bootstrap-based detector

and its advantage over other methods in a real case where the dis-
tribution of the data samples in unknown.
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