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ABSTRACT

Despite the emerging architectural designs of compound-eye

imaging systems, the post-processing algorithms for the re-

construction of the final image from the multiple sub-images

is still not fully developed to maturity, resulting in poor qual-

ity or low resolution of the reconstructed images. In this

paper, we describe and investigate a practical computational

compound-eye imaging system with super-resolution recon-

struction. This methodology can enhance the image quality

by increasing the resolution of the reconstructed image. A

virtual compound-eye camera is built to demonstrate the fea-

sibility of the system. Simulation results which investigate

the tolerance of the system to lens diversity, for instance focal

length and aberrations, are also presented.

1. INTRODUCTION

Many applications demand the miniaturization of the imaging

systems. Direct scaling of the lens elements however would

degrade the image quality due to diffraction. Recent devel-

opment of the multi-lens imaging systems has shown to be

a promising solution. Instead of using a single large lens to

form a single image of the object, a multi-lens imaging sys-

tem uses an array of small lenses to form multiple sub-images

of the object. The final image of the object is retrieved by

post-processing the sub-images. The use of an array of small

lenses in the imaging system allows the system to become

very compact. An imaging device designed in such a fashion

is commonly known as a compound-eye imaging system.

Compound-eye imaging system design has received a lot

of attention in recent years. Advantages of compound-eye

imaging systems are compactness, lightness and wide field of

view. Possibility of parallel signal processing is also consid-

ered as a potential of compound-eye camera. Several research

groups have designed and constructed novel architectures of

compound eye imaging systems [1, 2, 3]. For example, an

artificial apposition compound-eye imaging system was de-

signed based on the apposition compound eyes of small in-

vertebrates [1]. Although this design of artificial compound-

eye drastically reduces the thickness of an imaging system

below 1 mm, both the resolution power and light efficiency

of the system is very low as only one sample point of each

sub-image is used in the reconstruction of the final image [1].

TOMBO (Thin Observation Module by Bound Optics) is an-

other compound-eye imaging system. This system has the ad-

vantage of high sensitivity over the artificial compound-eye

imaging system as the entire region of the each of the sub-

images are used to retrieve the image of the object [3]. Recon-

struction methods based on interpolation of pixel values have

been developed, which produce images of fair quality [4].

Resolution is a common problem of compound-eye imag-

ing systems. In this paper, we present how the techniques of

super-resolution can be employed in a compound-eye imag-

ing system to enhance the quality and resolution of the re-

constructed image, and investigate the performance of super-

resolution reconstruction on a practical compound-eye imag-

ing system. In section 2, we describe the compound-eye imag-

ing model of our concern. In section 3, the super-resolution

reconstruction algorithm is explained. The simulation results

which investigate the tolerance of the system to lens diver-

sity, for instance focal length deviation and aberrations, is dis-

cussed in section 4. Finally, concluding remarks are provided

in section 5.

2. ARCHITECTURE OF THE COMPUTATIONAL
COMPOUND-EYE IMAGING SYSTEM

Fig.1 shows the architecture of the computational compound

eye system [3] of our concern. The system consists of an n×n
microlens array, a separation layer, and a photodetector array.

In this system, every microlens corresponds to a β × β array

of photosensitive cells. A microlens together with its array of

photosensitive cell form an imaging unit. Each imaging unit

gives a β × β sub-image of the object on the photodetector

array.

The working principle of the computational compound-

eye imaging system is shown in Fig.2. The compound-eye

imaging system captures an n×n array of low-resolution sub-

images of the target object. Provided that there are sub-pixel

displacements in all the sub-images, super-resolution can then
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Fig. 1. The computational compound-eye system [3]

be employed to reconstruct a high-resolution image [5]. It

should be noted that under this framework, the optics, opto-

electronics, and signal processing are taken into account to-

gether in the imaging system design.

Fig. 2. Diagram showing the workings of the computational

compound-eye imaging system.

3. IMAGE RECONSTRUCTION BY
SUPER-RESOLUTION

In this section, we describe the super-resolution algorithm we

used in the reconstruction process [5]. We can mathematically

model the compound-eye imaging system [6]. The block di-

agram in Fig.3 shows schematically how the formation of a

sub-image ik from a target object f can be represented in

a mathematical model. The target object is regarded as the

desired high resolution image, on which a series of opera-

tions are done. First, as the lenses are displaced from one

another, each sub-image formed is shifted away from the ref-

erence frame by a corresponding amount. This is referred

to as shifting. Second, the light of the high resolution scene

passes through the lens and the photosenstive cells collect and

average the light intensity of a finite area. This process is
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Fig. 3. Block diagram representation of the compound-eye

imaging system.

modeled as blurring and downsampling of the high resolution

scene. Finally, noise is added to the sub-image due to noise

of the photosensitive cells and quantization. Mathematically,

we have

ik = DkBkSkf + vk (1)

where Sk, Bk and Dk represent the shifting, blurring and

downsampling operator, while vk is the noise added to the tar-

get object. To reconstruct the desired high-resolution image f
from the set of low-resolution sub-images {i1, i2, ....., in×n}
by super-resolution, the sub-images are first interspersed ac-

cording to their respective lens displacements to form an im-

age g with M×M pixels, where M = n × β. g is referred

to as the observed high resolution image. Then, using column

by column ordering for g, we have

g = Hf + η (2)

where H is the reconstruction operator. f can then be solved

by minimization and regularization techniques:

min
f

{‖Hf − g‖2 + α‖f‖} (3)

where α is the regularization parameter. Cosine transform

preconditioners are used to increase the computational speed

for the reconstruction process [5].

4. SIMULATION RESULTS

A virtual camera with a 2-by-2 lens-array is built to investi-

gate the performance of a computational compound-eye sys-

tem with super-resolution reconstruction. Simulations have

been done to investigate the performance of our super-resolution

algorithm on an ideal compound-eye imaging system and a

practical compound-eye imaging system. An assumption in

our experiments is that there is no cross talk between sub-

images. In this paper, the signal-to-noise ratio (SNR) of an
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N × N image i(x, y) is defined as

SNR (dB) = 10 log

∑N
x=1

∑N
y=1 f2(x, y)∑N

x=1

∑N
y=1(i(x, y) − f(x, y))2

(4)

where f(x, y) is the N × N target object from which i(x, y)
is produced. In the case of a sub-image whose dimension is
N
2 × N

2 , we expand it to an N × N matrix ĩ(x, y) given by

ĩ(x, y) = i(x, y) ⊗
[

1 1
1 1

]
(5)

before the SNR is computed.

4.1. An Ideal Compound-eye Imaging System

An ideal compound-eye imaging system is first investigated.

By an ideal compound-eye imaging system, we mean all the

lenses in the lens array have the exact required value of focal

length (thus all four sub-images captured are in-focus) and

that there are no aberrations. Fig.4 shows the simulation re-

sult, where (a) is the target high-resolution scene, (b) is one of

the sub-images, and (c) shows the reconstructed image. It can

be observed that the reconstructed image shows good visual

quality, and that it is of higher resolution than the sub-image.

The SNR of the sub-image is about 22.4 dB while that of the

reconstructed image is about 25.3 dB.

(a) The target object.

(b) One of the sub-images. (c) The reconstructed image.

Fig. 4. Simulation results from the virtual camera with super-

resolution reconstruction.

Note that we have a choice of the value of regulariza-

tion parameter α in the super-resolution reconstruction. Fig.5

shows the SNR of the reconstructed image with the sub-images

corrupted by different amount of Gaussian noise. It can be ob-

served that with a lower level of noise corruption, a smaller

value of α gives a higher SNR of the reconstructed image,

while at a higher level of noise corruption, a larger value of α
gives a better reconstruction result.
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Fig. 5. SNR of the reconstructed image against level of noise

corrupting the sub-images.

4.2. A Practical Compound-eye Imaging System

Since it is unlikely that the lenses in a practical compound-

eye system all have the exact required focal length and with

no aberrations, simulations have been done to investigate the

effects of deviation of focal lengths and also of aberrations of

the lenses on the quality of the reconstructed image.

In the experiments which study the effects of focal length

deviation on the quality of the reconstructed images, the focal

lengths of the four lenses of the virtual camera were assigned

by generating a random distribution of focal length f with a

mean fm and standard deviation σ (any f generated which

deviated from fm by 2σ were discarded). The percentage of

focal length deviation is calculated by

σ

fm
× 100% (6)

The four sub-images obtained from the virtual camera were

used to reconstruct the high-resolution image by our super-

resolution algorithm. The SNR of the reconstructed image

was then measured. Simulations were done with different per-

centage of focal length deviation. The results obtained were

plotted and shown in Fig.6. Note that each data point was

obtained by averaging the results of 30 data sets.

It can be observed from Fig.6 that the reconstructed im-

age show good SNR of about 25 dB when the focal lengths
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Fig. 6. SNR against variation of focal lengths
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Fig. 7. SNR against aberration coefficient

deviate from desired focal length by less than 1.5%. After

that point, the SNR of the reconstructed images falls almost

linearly to about 22 dB at a 4% focal length deviation. This

shows that the system is to some extent tolerant to focal length

deviation.

The methodology in the study of the effects of spheri-

cal aberration on the reconstructed image is the same as that

of focal length deviation. Random distribution of aberration

coefficients with a specific standard deviation were gener-

ated and assigned to the four lenses. In Fig.7, the SNR of

the reconstructed image decreases quite linearly from about

25.5 dB when there is no aberration to below 20 dB at an

aberration coefficient of about 2. This shows our system is

quite sensitive to spherical aberrations.

5. CONCLUSION

We have established and investigated a computational com-

pound eye imaging system with super-resolution reconstruc-

tion. Simulation results generated by our virtual camera have

proved the implementation of our super-resolution algorithm

on image reconstruction of the compound-eye imaging sys-

tem promising. The current system shows tolerance in focal

length deviation of the lenses to some extent, but is quite vul-

nerable to spherical aberration. We believe that the perfor-

mance of the system can be improved by taking into account

the parameters of the optical system, for instance the focal

length deviations and aberration coefficients of the lenses, in

the post-processing algorithm.
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