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ABSTRACT

In this paper we consider the problem of using a network of sen-
sor and actuator nodes, to synthesize a given desired wave field
in a given medium – we refer to this problem as the distributed
Wave Field Synthesis problem (dubbed dWFS). We formulate this
problem as one of minimization of a quadratic function, subject to
linear (and very sparse) constraints. This formulation results from
a finite-element approximation of the underlying wave equation,
which constrains the values that a field and the source that induces
that field can take. We present a complete solution for a 1D vibra-
tion, although our solution method can be readily extended to any
number of dimensions. Numerical simulations are included.

1. INTRODUCTION

Many physical processes include transmission of wave patterns
through various media. One of the simplest approaches in analyz-
ing such processes is the use of wave equation in the linear form.
Assuming homogeneity of material properties of the medium (i.e.,
density, elasticity) and that the pressure varies linearly with den-
sity inside its volume, a Newtonian formulation gives the linear
wave equation [1]. An example is in acoustics where the linear
wave equation is used to relate the air pressure variations with the
forces that cause these variations.

In this work, we study the one dimensional wave equation us-
ing a finite element linear model in space-time. The general form
of the one dimensional linear wave equation is given by:
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where α, β are constants depending on the properties of the medium,
Φ is the wave field function and F is the source function. For the
above case, the solution has been well studied in [1]. However, a
difficult scenario arises when these parameters vary in space and
time. For example, space variation could be an inhomogeneous
material medium whose density varies as a function of space. A
time variation, can be a moving object inside a medium where the
material properties at a given spatial location are changing in time.
The finite element method provide solutions to this class of prob-
lems and hence is the natural choice for analysis in this paper.

Various groups, primarily in Germany and in the Netherlands,
have studied the WFS problem, under a different formulation based
on Huygens’ principle for wave propagation. WFS is a technique
which has been studied using the Kirchoff integral in [3]. In the
case of spatial and temporal inhomogeneities, using the traditional
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techniques mentioned in [3], WFS appears to be a complex prob-
lem, while using the proposed finite element method the solution
is more straightforward. A number of references on varios aspects
of the WFS problem are available from http://www.lnt.de/LMS/.

2. A FINITE-ELEMENT APPROXIMATION OF THE
WAVE EQUATION

2.1. Decomposition of the Space-Time Domain

In order to apply a space-time finite element method we decom-
pose the domain Ω in which (1) is defined into square space-time
elements. In the simple case of a continuous medium of length
X space units and assuming a time interval of length T time units
the defined domain Ω = [0, X] × [0, T ] can be decomposed in N
square elements of side α (∆Ω

(n)
n=1,...,N ) as Fig. 1 displays.
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Fig. 1. Spatio-temporal decomposition of a 2D domain

This decomposition can be extended to problems in higher di-
mensions. Also for discontinuous media the previous technique is
also valid. In the case of n spatial dimensions we use d + 1 di-
mensional hypercubes as elements. For example, to analyze d = 2
dimensional wave propagation phenomena we use d + 1 = 3 di-
mensional (i.e., cubic elements) and space-time surfaces.

2.2. Building a Linear Approximation

In the decomposition above, a set of G global space-time points
lying on the apexes of the square elements is defined by the pairs
(xg, tg)g=1,...,G. At these points the values of the field function
Φ(xg, tg) and the source function F (xg, tg) can be compactly
written as a field vector {Φ} = {Φ(xg, tg)} and a source vec-
tor {F} = {F (xg, tg)} respectively. As shown in [8], there exists
a linear relationship between the previous vectors expressed as:

[KG×G]{Φ} + {F} = 0 (2)
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The entries of the matrix [KG×G] depend on the geometry of
the medium and the material properties of the medium captured by
the parameters αn and βn which are the values of the parameters α

and β appeared in (1) inside each elemental domain ∆Ω
(n)
a . Also

αn and βn are assumed to be constant ∀(x, y) ∈ ∆Ω(n).
The entries Kij of the matrix [KG×G] can be determined by

noting that if the pair (i, j) is not associated with any side of any
element in the decomposition of Ω then the entry Kij is zero, oth-
erwise its value can be calculated as shown in [8]. Therefore, since
in the decomposition of Ω not every space-time point is connected
with every other space-time point, unless they belong to the same
side of an element, we conclude that most of the entries of [KG×G]
are zero making the matrix sparse. Fact that facilitates many linear
operations [6]. The system in (2) is a space-time finite element
representation of (1).

The values of the field at the intermediate points inside the
elemental domains were calculated by a simple linear interpola-
tion. Such interpolation for one square elemental domain ∆Ω(n),
is shown with the dashed quadruple in Fig. 2.
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Fig. 2. Linear interpolation in a square elemental domain ∆Ω(n)

3. APPLICATION TO FIELD SYNTHESIS

3.1. dWFS Problem Formulation

The problem of Wave Field Synthesis consists of the determination
of a source function F (x, t) such that, when used as an excitation
driving the wave equation, the corresponding field of pressures that
results approximates a given desired field Φ(x, t), to within an
accepted degree of error [1, 2].

In a continuous two dimensional space-time domain Ω, we
formulate the problem as follows. Given:

• A continuous domain Ω = [0, X]× [0, T ], with time/space
varying properties determined by two functions α : Ω → R

and β : Ω → R (one for each dimension).

• A subset Ω eF
⊂ Ω, as the support domain of the source

function eF .

• A field function Φ ∈ L2(Ω).

• A differential operator that acts on the function Φ and is
defined by:

L[Φ] =
∂

∂x
[α

∂Φ

∂x
] −

∂

∂t
[β

∂Φ

∂t
] (3)

This differential operator defines the wave equation men-
tioned in (1) namely:

L[Φ] + F = 0 (4)

where F is defined as the source function. Also, based
on the uniqueness of the solution of the wave equation in
terms of Φ, we can define a new operator L′, which given a
source, maps it to the pressure field induced:

L′[F ] = Φ. (5)

Then, the WFS problem consists of solving a constrained inverse
problem: we seek a source eF : Ω → R, eF ∈ L2(R), that solves

min
F

||Φ − L′[F ]||2,

subject to constraints on the locations on which it can take non-
zero values:

eF (x, t) = 0, (x, t) ∈ Ω − Ω eF
.

By solving the above problem we will be able to give an ap-
proximate optimal solution in the “square error minimum sense” in
a Wave Field Synthesis problem in the case of any imposed spatial
and temporal constraint on the source function eF . Next we will
show how the above problem can be treated as a problem of min-
imization of a quadratic function with linear constrains in a finite
element setting.

3.2. Solution Using Linear Approximation

Consider a simple domain Ω, such as the one in Fig. 1, and its
decomposition described in Section 2.1. Then one can divide the
set of global space-time points {1, ..., G} of the decomposition
into two subsets G1 and G2, in such a way that the subset G1

contains all the global space-time points that belong to the support
of the constrained source function eF mentioned in Section 3.1, and
G2 contains the rest of the points. A possible division of the set
of global space-time points of the domain of Fig. 1, is displayed in
Fig. 3.
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Fig. 3. Division of the set of global space-time points into two
subsets G1 and G2

By expressing the values of the differences (errors) between
the field to be synthesized and the synthesized field at the space-
time points of the subsets G1 and G2 as vectors {e(1)} and {e(2)}
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respectively, one can write according to [8] the following system:

[K(11)]{e(1)} + [K(12)]{e(2)} + {F (1)} = 0

[K(21)]{e(1)} + [K(22)]{e(2)} + {F (2)} − { eF} = 0,

(6)

where {F (1)} and {F (2)} are vectors of values of the direct source
function F at the space time points of the subsets G1 and G2 re-
spectively. This direct source function F is associated with the
field to be synthesized Φ via (1) in a continuous setting, or (2) in a
finite element setting.

The vector { eF} contains the values of the constrained field,
at the points of the subset G1 distributed source function that per-
forms the dWFS.

The matrices [K(kl)], k, l ∈ {1, 2} are sub-matrices of the
matrix [KG×G]. The entry K

(kl)
ij k, l ∈ {1, 2} i ∈ Gk j ∈

Gl is equal with the entry Kij i, j ∈ {1, ..., G} of the matrix
[KG×G].

Using the discretization above, the dWFS problem in the end
consists of specifying the constrained source vector { eF}, such that
the total square error:

Err = {e(1)}T {e(1)} + {e(2)}T {e(2)}

is minimized, and provided that the consumed energy does not
exceed a given budget ({ eF}T { eF} < Emax).

According to [8], and by expressing the two error vectors {e(1)}

and {e(2)} as {e(1)} = [A]{ eF} + {b} and {e(2)} = [C]{ eF} +
{d}, the sought solution can be given as:

{ eF} = [[A]T [A] + [C]T [C]]−1{[A]T {b} + [C]T {d}}

[A] = [[K(11)] − [K(12)][K(22)]−1[K(21)]]−1

[C] = −[K(22)]−1[K(21)][A]

{b} = [A]{[K(12)][K(22)]−1{F (2)} − {F (1)}}

{d} = [K(22)]−1{{F (2)} − [K(21)]{b}} (7)

3.3. Quantification of the Error

Based on the previous derivations we conclude that two kinds of
approximation errors are introduced:

• The linear interpolation of the field and the source func-
tion, inside the square elemental domains results in errors
between these functions and their interpolated versions. As-
suming continuity of these functions inside the domain Ω,
fact that can be supported by physical considerations, the
errors due to interpolation can be reduced by considering
smaller sides of the square elemental domains (α).

• Another source of error is created by the difference be-
tween the original and synthesized wave field. A finite el-
ement version of this error written as E = {e1}

T {e1} +
{e2}

T {e2}. This is the component of the error that we seek
to minimize in our problem formulation.

3.4. Results

In the next figures the results of a simulation of a wave propagation
in a line medium with 110 space points is presented. In Fig. 4, the
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Fig. 4. Field generated by central excitation in 1D medium

sampled wave field is shown. The wave front was generated using
an one dimensional finite difference model and a central piston
source. Fig. 5 shows two snapshots of the resulting field, at two
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Fig. 5. Two snapshots of the propagated field

different points in time.
Next, Fig. 6 shows the source estimated to have produced the

field observed in Fig. 4, based on samples of the observed wave
field. The detection is based on the proposed finite element scheme
and is obtained by directly solving for the vector {F} equation (2)
given the wave samples contained in {Φ}.
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Fig. 6. Detected source based on the previous field data

Next, Fig. 7 shows the source obtained by computing (7), when
the source is constrained to take non-zero values only in the region
defined in Fig. 3. Finally, Fig. 8 shows the field generated by the
constrained source. In this case, it is clear that after an initial tran-
sient behavior, the two fields become identical.
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Fig. 7. Constrained Source generating the previous field with min-
imum error
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Fig. 8. Field generated by the constrained source.

4. CONCLUSIONS

4.1. Summary

In this paper, we have formulated and solved the problem of find-
ing the best possible approximation to a given wave field, when
generating this approximation using a distributed array of sources
arbitrarily located in space.

We believe our formulation in terms of solving a quadratic
minimization subject to linear constraints, besides other advan-
tages that it may have over more traditional methods in terms of its
ability to handle non-homogeneities, is particularly well suited for
implementation on a distributed actuator array. This is because the
matrix KG×G is extremely sparse, and furthermore, its few non-
zero entries are not uniformly spread over the whole domain Ω,
but are contained within a small region. As a result, when the com-
putation is distributed over a large number of actuator nodes, we
expect that highly localized communication patterns will emerge –
this is the main technical question we are investigating now.

4.2. On the Need to Increase the Resolution of WFS Systems

Why are we interested in the dWFS problem? So, far WFS has
been studied under two important assumptions: a relatively small
number of actuator nodes, and operated under the authority of a
central controller. But, with large scale networks of sensors and
actuator devices, equipped with wireless communication capabili-
ties, and embedded in a physical medium, it should be possible to
observe and control these signals with much higher resolution than
is possible in the classical formulation of these problems.

We would like to point out that drastically increasing the res-
olution of a WFS system is not “an incremental tweak” on a clas-

sical problem, delivering more of the same – instead, both entirely
new applications are enabled on the practical side, and the develop-
ment of those applications requires new basic science, thus making
it a worthy goal in itself. Consider, for example, the WFS problem
in the context of acoustics. Spatial sound systems exist already,
using about 5-7 speakers. But they require manual calibration, and
their effectiveness is limited to a small area that is often referred
to as the “sweet spot”. If instead of using a few speakers we could
use a few hundred of them, each one very small, and intercon-
nected over a wireless network, the size of the sweet spot could
be grown to cover a much larger area. And we believe that having
the ability to shape the wave field almost everywhere (and not at
isolated points in space) enables applications that are simply not
possible with small sweet spots. For example, the creation of vir-
tual environments, such as the meeting room of the Jedi council in
the last Star Wars movie, as discussed in Fig. 9.

Fig. 9. A meeting of the Jedi council in “Star Wars III: Revenge of
the Sith” – the holographic images correspond to council members
attending the meeting from a remote location. If we are ever to
realistically render a person moving freely around a room as part
of a virtual reality system, it will be necessary to have the ability
of placing a synthetic sound source at any arbitrary location in the
room where we expect that person to move. This is possible with
array technology (in this case a speaker array), but the number of
speakers needed to enable a realistic rendering of a virtual acoustic
source is many orders of magnitude higher than anything available
today. We believe however that a very large number of micro-
speakers, equipped with wireless communication capabilities, can
do the trick.

Work in our lab, using an acoustic array comprising 64 speak-
ers and 256 microphones, is currently under way with the goal of
demonstrating a virtual mobile point source.
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