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ABSTRACT

We consider a team of miniature unmanned air vehicles
(MUAV5s) in a multi-static radar scenario. Time delay and Doppler
measurements made at the UAVs are transmitted to a base sta-
tion which is tracking a target. The base then transmits heading
commands to the MUAVs to reduce the tracking error. Optimal
solutions that attempt to minimize a function of the error covariance
or maximize the observability of the system are computationally
difficult to implement. We present a simpler approximate method
that yields a closed-form solution and performs comparably to the
optimal approaches.

I. INTRODUCTION

Over the past decade, Unmanned Air Vehicles (UAVs) have
moved into the spotlight as solutions for many military and civilian
problems (e.g., surveillance, search and rescue, and tracking). This
is in part due to technological advancements in batteries, sensors,
and micro-controllers that make the UAVs more dependable and
practical. Due to their versatility and cost, the “mini-UAV” (MUAV)
class of aircraft is an increasing focus of research [1]-[3]. Because
of their size, they are less apt to be detected, can fly at lower
altitudes (obtaining more precise or localized information), and are
easily launched, often by hand and without a runway.

In this paper we will investigate the use of a team of MUAVs for
target tracking. We are particularly interested in coordinating their
motion in order to improve tracking performance. Manipulating
the trajectory of an individual airborne sensor taking bearing-only
measurements has been considered in [4]-[6]. In recent years this
theory has been applied to teams of UAVs where each agent
is equipped with radar sensing equipment. In [7], an interesting
information theoretic approach was implemented, while [8], [9]
followed the traditional observability criteria developed by Kalman
to improve the tracking performance through trajectory planning.
Recently, [10] added the use of range measurements to this tracking
problem.

The use of bearing measurements is practical on large sensor
platforms. However, because MUAVs are small, they have a very
limited aperture and they are more susceptible to turbulence than
a larger UAV. Furthermore, their payload capacity as well as cost
constraints inhibit the use of precisely accurate attitude sensors.
Consequently, it is typically impractical to obtain reliable bearing
measurements from a MUAV. Instead, in this paper, we examine
the use of less sensitive Doppler and time delay measurements
made by the MUAVSs for target tracking. In an earlier paper [11],
we presented two methods based on time-delay and Doppler that
require gradient-search optimization of a complicated criterion
function. Here we find an approximation that admits a closed-form
solution, and that performs comparably to the optimal solution.
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Fig. 1. Bistatic Radar scenario. Heading is measured wrt North.

II. PROBLEM STATEMENT

Figure 1 shows the multi-static radar setting we consider, where
N MUAVs make time-delay and Doppler measurements of a target
based on a radar signal transmitted from a base. The MUAVs
communicate their measurements to the base, which tracks the
target and sends heading commands back to the MUAVs. The
target state is written as x: = [T+, Yt, Vta, vty}T, and consists of
the target’s (x,y) position and velocity coordinates.

For the i"" MUAYV, the time delay and Doppler are given by

1
T = E(Rb+Ri) )
B OR, OR:
“”““’C<W+ m)’ @

where w, is the radar carrier frequency, c is the speed of light, and
Ry, R; are respectively the distances from the base station to the
target, and the target to MUAV ¢ [12]. Each MUAV is assumed to
be equipped with an autopilot as described by [1]. The autopilot is
capable of holding constant velocity and altitude, and is tuned to
exhibit first order response to heading commands. The equations
of motion are given by

T; = Vicosy; + wy

i = Visin; + wy

Vi = ay (Y7 — i) (©)
where x; = [z, y;]" is the inertial position of the it MUAV, 1
and 1§ are respectively its current and commanded heading, V; is
the speed of the MUAV, w = [w., w,]” is the wind speed, and
oy is a parameter defining the response of the MUAV to heading
commands.
II-A. Extended Kalman Filter

At each time step, we assume the base station receives measure-
ments from all N MUAVs, given by Equations (1) and (2). We
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stack these readings into the received vector
Ve = hp (X k) + vk “4)
T
= [Tiky " TNy Wik, WN,E] + Uk

where the subscript £ has been added to denote the time associated
with the data, and vy, represents Gaussian measurement noise: The
Jacobian of the received measurements will be written as H, =

aa% . Assuming a nominal constant velocity model for the
targetj(kv‘vl;:i\lwrite the propagation of the target’s states as
1 0 Ay O
Xep = AXp 1+ M = 8 (1] (1) Aot Xe,k—1 + Mk 5(5)
0 0 O 1

where 7, ~ N (0, Q) represents process noise.
Given the above, the Extended Kalman Filter (EKF) equations
for the problem are given below:

o Time Update equations:

Xplk—1 = AXp_1)k-1 (6)
Pui1 = AP, 11 AT +Qu (7

o Measurement Update:

Ky = Pk|k—1Hg(HkPk|k—1Hg + Ry ®)
Xijk = Xek—1 + Kr(Ye — he(Xgr-1)) )
Prj = (I — KpHy)Pprjr_q (10)

where Py p_1 is the covariance of the state estimate for time
k given information up to time k£ — 1. We desire to minimize
the error in our state estimate. The reconfigurable nature of the
sensor array enters into the Kalman filter through the Jacobian Hy,
and the MUAVs’ motion will only effect future estimates of the
state through measurement update equations (8)-(10). We will now
discuss methods for controlling the MUAVs to improve our state
estimate in this EKF scenario.

III. OPTIMIZATION METHODS

In this section, we describe three one-step optimization methods
for adjusting the MUAV headings to optimally track the target
according to various criteria.

III-A. EKF Error Covariance Minimization

In the first technique, we minimize a function of the EKF error
covariance [11]. The optimal control for the MUAV team is found
by propagating the error covariance Py, one step into the future
using an estimate of the future measurements, and then minimizing
the trace of the resulting Py 1|1. A * has been used to emphasize
that this is an estimated covariance since we do not know Hp 1
at time k.

In particular, P 1, is calculated using equation (7), and we
then assume acquisition of measurements at time k + 1, given the
target’s estimated state X1 and the propagated positions of the
MUAV team using the vector heading for all MUAVs

Yo =1 on]"

We linearize about this estimated measurement and denote the
resulting Jacobian by Hy1. Then using equation (10), we estimate
the error covariance at time k + 1 and denote it by Py 1x41. The
optimal MUAV headings are then given

1, = arg min trace (f’k+1‘k+1) . (11)
Vi

III-B. Information Filter Approach

An alternative approach is to examine the equivalent information
filter [13], where rather than propagating the state estimate error
covariance, its inverse (i.e., the information matrix) is propagated.
In this filtering scheme, upon acquiring new measurements, the
state information matrix is updated as

Yk =Py = Yepo1 + Hi Ry 'Hy, (12)

where the term HER;lHk accounts for an information increase
in the state estimate due to the new observations. Here we desire to
maximize the information received in the next observation at time
k+ 1.

A simple approximation to maximize the received information
is made by setting the process noise to zero: Q = 0. Then, to
maximize the information we simply maximize the determinant of
the received information matrix [10], [14]:

k+n
Lﬁk‘+n,lc - Z ¢1‘7:k;+nH;'TRi_1Hi¢i,k+n

i=k
where ®;. ., is the state transition matrix from time to to ;.
This matrix accounts for the loss or gain in information due to
the motion of the target, which can be seen from equation (7).
Under the assumptions in this paper, ®¢; ¢, = A'r=* and for
one-step case (n = 1) the algorithm becomes

r = arg mindet (F41,1)

Vi
= arg min det (AfTIilfﬂR,:ilI:IkHA*l) . (13)
Y

III-C. Information Theoretic approach

Mutual information I(x;y) = H(x)— H (x|y) can be viewed as
the reduction in the uncertainty of x given knowledge of y [15]. We
would like to maximize this reduction in uncertainty, or equivalently
minimize the conditional entropy H (x|y) which contains the term
we have control over using the MUAVs (y).

In order to determine the condition entropy we first linearize the
observation received about the state estimate:

y(k+1) = h(Xpq1pk) + Hi(Xe1 — Xegajx) + V1 -
Then stacking the state and measurement errors together, we have

[ Xk —)A(kA+1|k ""N(O:Zk+1\k)

y(k) —h(Xgs1ix)
where

Y1k = {A Pkf”k . AP’““““AI:I;{H }
Hi 1 Priipe He P HE L + Ry

The conditional entropy can be written as
H(xly) = H(x,y) — H(y) (14)
Stk
’I:Ik+113k+1\kﬂg+1 + Rk+1‘

= %log (2me)*

In equation (14), the covariance term in the denominator is sim-
ilar to the observability matrix given in (13). This term maximizes
the information gathered from the observations. However the joint
covariance Xy 1) in the numerator is added and accounts for the
fact that we not only want to maximize the new information but
that it be as different as possible from what we already know about
the state. Formally the optimal heading commands are found by

Y = argwrninH (Xkt16lyrs1) - 15)
k

IV - 1170



15.245

Cost

15.24

15.235

2 0 2
¥, ¥y

(b) Cost function: 2 is set to
previous heading

(a) Cost function

Fig. 2. One realization of observability matrix plotted against ;
and 12, where n = 10 in equation (13).

IV. CLOSED FORM SOLUTION

Using A; to denote the time step, we note that the i'* MUAV’s
position on step in the future can be approximated by

zi(k+1) = zi(k) + A V; cos ),
yi(k+1) =~ yi(k) + A Visin; . (16)

This implies the MUAVs position, as a function of heading, is
sinusoidal in nature. Figure 2(a) depicts the surface of the cost
function in equation (13) in Section III-B. Figure 2(b) is a slice from
the 3-D surface on the left, found by setting 12 = 0. (The surfaces
for the estimated covariance matrix and conditional entropy, given
the same MUAV and target parameters, have also been shown at
the end of the paper (see Fig. 6)).

Given this observation, we approximate our cost function as
sinusoidal, and assume that it is separable in the various MUAV
headings (i.e., each MUAV’s heading depends on the others only in
amplitude, denoted by o). We assume that the MUAV’s heading is
dependent on the target’s state through a phase parameter we label
0. More specifically, we model our cost function as a sinusoid with
a known frequency and unknown amplitude («) and phase (0),
corrupted by id gaussian noise, v(1);):

J(¥i) = accos (¥i +0) + B+ (i) ,

The constant [ is independent of 0; therefore it does not effect
the ML estimate and will be dropped in the sequel. In finding the
heading for MUAYV i, we set the heading for all MUAVs j # i to
their previous values. We need only specify the phase term in order
to completely approximate the criterion function. The maximum
likelihood phase estimate is given by

fOT J(t1) sin (tl)dtl
[ J(t2) cos (t2)dt2
We approximate the integrals by finite summations:

5., J(0) sin ()

tan (é]ML) = —

tan (é]w[,) ~

X, J(t2) cos (ta)
Vt17t2:&7 jE[O,m—l}. (17)
m

In the simulations of Section V, the use of the four samples t1,t2 =
{0,Z, 7,3} is shown to give good performance. Notice that this
approach decouples estimation of the MUAV heading angles due to
the cancellation of « in equation (17). Using the arctan function
to determine 6p/r,, the minimum and maximum values of the cost

function will be approximately located at:

Ymin = T — OnL
wma:c = _al\lL 5
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Fig. 3. Trajectories on left. Corresponding estimated covariance
(trace(Pj41jx+1)) for ML and brute force search on left.
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Fig. 4. Trajectories on left. Corresponding observability (|-Z,41,k|)
for ML and brute force search on left.

where we will use either min or max depending on the cost function
being tested.

V. SIMULATION RESULTS

For all simulations, distance will be measured in meters, and
each simulation runs for a period of 900s. The base station is
assumed to be located at the the origin, and is denoted by a
thick black dot in the figures. The UAVs are initially located at
at (1500,50)m and (-2000,-2000)m, and are shown as large circles
in the plots. The MUAVs travel with a constant speed of 10m/s,
while the target moves with a nominal (undisturbed) speed 20m/s
originating at (1000,-1000)m. The target is depicted using a large
diamond. The measurement and process noise in the Kalman filter
are assumed to be constant, and are set to be a scaled identity
matrix: Q =R =101

Figures 3, 4 and 5 illustrate the effectiveness of the ML phase es-
timation minimization technique (Section IV). In these figures, the
three cost functions described in Section III have been employed.
A brute force optimization has been employed, as well as the ML
approximation for each cost. The difference in trajectories between
the brute force and ML optimization was minimal for each cost;
therefore,we have only plotted one instance of their flight paths.
The difference between the optimization techniques for each cost
function can be seen in the right subfigures of Figures 3, 4 and
5. We can see that the ML approximation performed close to the
optimal solution for these scenarios.

Using the three cost functions described in this paper, we ran
Monte Carlo simulations placing the target and MUAVs randomly
in a 1000 x 1000m? area, assigning each a random heading. It
was found that in 12% of the cases, the approximate method failed
to give performance similar to direct minimization of the criteria.
This failure rate was consistent among all three cost functions.
Typically, the approximate closed-form solution failed in cases
where the MUAVs’ geometry causes HTH to become low rank
(i.e., non-diverse measurements). In our measurement model, this
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Fig. 5. Trajectories on left. Corresponding conditional entropy
(H (x]y)) for ML and brute force search on left.

can occur at two times: when the MUAVs approach each other or
when they are positioned approximately symmetrically about the
velocity vector of the target. In most scenarios, such situations can
be easily avoided, and the approximate solution will perform well.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a closed-form solution to the
problem of finding the optimal trajectory for a team of MUAVs
involved in target tracking. We considered three different optimiza-
tion approaches to the problem, and found that the approximation
worked well in most cases for all three. Simulations show that
the closed-form solution closely tracks the performance of a full
brute-force optimization for realistic tracking scenarios.
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Fig. 6. Surfaces of cost functions plotted against )1 and s.
Compare with Fig. 2.
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