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ABSTRACT

This paper describes an algorithm that achieves noise robustness
in speech recognition by reconstructing the desired signal from a
mixture of two signals using continuously-variable masks. In con-
trast to current methods which use binary masks, this approach es-
timates the relative contribution of the desired source in a mixture
of sources and reconstructs the desired signal in proportion to its
estimated contribution to each time-frequency segment. Estimation
of the continuously-variable masks is based on the relationship be-
tween the relative intensity of each source and the interaural time
difference (ITD). Estimation of the ITD is accomplished using zero-
crossing-based methods. It is shown that the use of zero-crossing
approaches to estimate ITDs and continuously-variable masks pro-
vide better speech recognition accuracy than cross-correlation-based
approaches to ITD estimation and binary masks.

1. INTRODUCTION

Noise robustness remains a very important issue in the field of au-
tomatic speech recognition (ASR). While high recognition accuracy
can be obtained in a controlled and noise-free acoustic environment,
recognition accuracy is seriously degraded in a more realistic noisy
environment. On the other hand, humans can understand speech
even if it is subject to interference by competing speech or other
noises. This observation has motivated the development of many
types of signal processing approaches based on aspects of human
auditory perception (e.g. [1]).

In his treatise on auditory scene analysis (ASA), Bregman [2]
identified many cues that are used by humans to segregate a target
sound from interfering sources (e.g. [2]), including the spatial lo-
cation of sound sources. The primary acoustical cues for human
sound localization are interaural time differences (ITDs) and inter-
aural intensity differences (IIDs). ITDs serve as the localization cue
primarily at frequencies below 1.5 kHz [3], although the ITDs of
the low-frequency envelopes of higher-frequency components of a
sound can also be useful for sound localization. Many computa-
tional models have been developed to describe and predict binaural
processing [4, 5, 6]. Most of these include a model of peripheral au-
ditory processing which includes frequency analysis and subsequent
nonlinear operations (e.g. [7]), a mechanism for estimating the in-
teraural cross-correlation function on a frequency-by-frequency ba-
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sis, and a mechanism to disambiguate the temporal analysis, typi-
cally exploiting the IID of the signal and consistency over frequency.
These models have been incorporated into several systems that per-
form automatic speech recognition (e.g. [8, 9, 10]) . In recent work
Kim et al. estimated ITDs by comparison of the zero crossings of the
outputs of a bank of Gammatone filters rather than from the peaks
of the cross-correlation function of these outputs [11]. They demon-
strated that individual sounds from mixtures could be successfully
reconstructed by selecting specific time-frequency segments on the
basis of their estimated ITDs and IIDs.

So far, most algorithms for sound segregation and noise-robust
speech recognition within the framework of ASA have used binary
“masks” that specify which time-frequency components belong to
a particular sound source on an “all-or-none” basis (e.g. [9, 10,
11]). This is clearly an oversimplification of how sound sources are
combined. In this paper, we describe a method to estimate masks
that represent continuously-variable estimates of the extent to which
a desired sound source contributes to a particular time-frequency
segment, based on estimates of ITD derived from zero crossings.
We subsequently develop an estimate of that source in isolation by
combining the time-frequency segments in proportion according to
the weighting function. The use of a continuously-variable weight-
ing function rather than a binary mask provides smoother transi-
tions between segments that correspond to changes in the extent
to which the desired signal is dominant, which provides improved
speech recognition accuracy. In addition to comparing the effect of
binary and continuously-variable masks, we also compare the use
of zero-crossing-based and cross-correlation-based methods of ITD
estimation in terms of the sample standard deviation of the ITD esti-
mates and the resulting speech recognition accuracy.

While our work is based on the estimation of ITD information
from a pair of microphones, we do not consider our approach to
be closely based on models of auditory perception, despite the use
of terms like ITD from the binaural hearing literature. Specifically,
we make use of sensors (i.e. microphones) that are closely spaced
to reduce the effects of spatial aliasing, rather than sensors that are
spaced at approximately the distance between the two ears, and we
assume zero IID between the signals to the sensors.

2. SPEECH ENHANCEMENT USING ZERO CROSSINGS

The zero-crossing approach is popular because it provides a conve-
nient way to represent the synchronous response of low-frequency
auditory-nerve fibers to the fine structure of a sound source. The
ITD estimation algorithm used is very simple: zero-crossing points
are detected for the signal arriving at one sensor, and a search is

IV  1165142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



performed for the closest zero crossing of the signal from the other
sensor. The difference in time between the observed zero crossings
is regarded as a valid estimate of the ITD if it is smaller in magni-
tude than the time it takes for sound to travel from one sensor to the
other, and it is discarded otherwise. The actual zero crossings are
estimated by linear interpolation between the two points that strad-
dle the zero crossings. As mentioned above, the two sensors are
sufficiently close that there is no spatial aliasing for frequencies up
to half the sampling frequency. Hence, the largest possible delay
between the sensors is always smaller than half a period over all fre-
quencies of interest, so the closest zero crossings provide the desired
ITD value.

The mixture of speech signals from each sensor is first subjected
to frequency analysis, typically accomplished by passing the mixture
through a bank of Gammatone filters. Once the ITDs are estimated
in each frequency band according to the procedure above, they must
be converted into continuously-variable masks. Mask estimation is
accomplished by deriving a relationship between the ITDs and the
relative contribution of each source to the mixture. Let us approx-
imate the outputs of the narrow bandpass filters as pure tones, one
from each source as follows:

x1(t) = A1 cos(ω1t + φ1) + A2 cos(ω2t + φ2),

x2(t) = A1 cos(ω1(t − d1) + φ1) (1)

+A2 cos(ω2(t − d2) + φ2),

where Ai, wi, di, and φi denote the amplitude, the frequency, the
delay, and the phase for the ith source, respectively. As noted above,
the component amplitudes at the two sensors are assumed to be equal
because of the closeness of the sensors. Without loss of generality,
we assume that a zero crossing for x1 occurs at time t1, and that the
nearest zero crossing for x2 occurs at t1 + τ , producing an ITD of τ .

We assume that ωi(τ − di) is small, which is especially valid at
low frequencies, so x2(t1 + τ) can be approximated by

x2(t1 + τ) ≈ −A1 sin(ω1t1 + φ1) · ω1(τ − d1)

−A2 sin(ω2t1 + φ2) · ω2(τ − d2). (2)

Since x2(t1 + τ) = 0,

τ(A1ω1 sin(ω1t1 + φ1) + A2ω2 sin(ω2t1 + φ2))

≈ A1ω1 sin(ω1t1 + φ1) · d1 + A2ω2 sin(ω2t1 + φ2) · d2. (3)

Since x1(t1) = A1 cos(ω1t1 + φ1) + A2 cos(ω2t1 + φ2) = 0 and
τ is obtained from the nearest zero-crossing point,

τ ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1
√

A2
1−A2

2 cos2(ω2t1+φ2)·d1+A2ω2| sin(ω2t1+φ2)|·d2

ω1
√

A2
1−A2

2 cos2(ω2t1+φ2)+A2ω2| sin(ω2t1+φ2)|
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A2
2−A2
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A2
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1 cos2(ω1t1+φ1)

otherwise.

(4)

Through simulations and further derivations we realized that when
the frequencies ωi are uniformly distributed over a narrow band with
ω1 ≈ ω2 and the phases φi are uniformly distributed over the inter-
val (−π, π), τ̄ , the mean of the estimated ITDs, can be approximated
by

τ̄ ≈ g(A1, A2) · d1 + (1 − g(A1, A2)) · d2, (5)

where

g(A1, A2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(A2
1−

A2
2
2 )−A2

1 arctan

(
A2√
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1−A2

2

)
−A2

√
A2
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2

π(A2
1−A2

2)
if A1 > A2,

1
2

if A1 = A2,

− π
2 A2

1+A2
2 arctan

(
A1√

A2
2−A2

1

)
+A1

√
A2

2−A2
1

π(A2
2−A2

1)
otherwise

(6)

Using Eqs. (5) and (6), one can easily relate the estimated ITDs to
the relative amplitudes of the sources in a mixture. Note that Eq. (5)
describes a monotonic function suitable for one-to-one mapping and
does not depend on any frequency-specific parameters so the same
function can be used in all bands. In each frequency band, this pro-
cessing results in a series of ITDs estimated at each zero-crossing
point, along with a set of estimated weighting factors for the desired
signal corresponding to each zero crossing. The desired signal is re-
constructed by multiplying the output of each bandpass analysis fil-
ter by a piecewise-linear amplitude modulation function that passes
through the values of the weighting coefficients for the desired signal
at each zero crossing point. A time-reversed version of the enhanced
signal in each band is then convolved with the corresponding Gam-
matone filter to negate any across-frequency phase effects, and the
outputs are time reversed again and summed across frequency.

3. COMPARISON OF ITD-ESTIMATION METHODS

In the previous section, a method for developing continuously-variable
mask estimates based on zero crossings was described. Since ITD
estimation has traditionally been accomplished using cross-correlation,
we compare the zero-crossing-based and cross-correlation-based meth-
ods in terms of the sample standard deviation of the resulting ITD es-
timates by simulation. For each value of the relative signal strength
R = A2/(A1 + A2), we obtained 100,000 samples of ITDs using
Eq. (4). For each sample, the phases φi and frequencies ωi were var-
ied randomly over the intervals (−π, π) and (ωcf − BW/2, ωcf +
BW/2), respectively, where ωcf and BW are the center frequencies
and bandwidths of the frequency channels. The simulations were
obtained with parameter values d1 = 0, d2 = 1/16, 000 sec, and a
frame length 2T = 25.6 msec.

Fig. 1 shows the sample standard deviation of ITD estimates as
a function of the relative strength R for three different frequency
bands. To present corresponding results using a cross-correlation
method, we also derive a function relating the amplitudes Ai to
the ITDs based on cross-correlation in the Appendix. In the low-
est frequency band, the zero-crossing-based ITD estimation method
provided estimates of smaller variability than the cross-correlation-
based estimate. The difference in sample standard deviations was
reduced in the middle frequency band, and cross-correlation-based
processing was slightly better in the highest frequency band for most
values of R. It is worth noting that the zero-crossing-based method
estimates an ITD at almost every zero crossing based on local sig-
nal information, while estimation of the cross-correlation function
requires a greater length of input samples. In high frequency bands,
the bandpass-filterbank outputs encounter zero crossings very fre-
quently, and the duration needed for reasonable cross-correlation es-
timates may include hundreds of zero crossings. Because each esti-
mate of the contribution of the desired signal based on zero cross-
ings affects the reconstructed output over only a small neighbor-
hood of samples, the impact of errors in estimating the weight of
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(a) The lowest frequency band
(Center frequency CF: 170 Hz, Bandwidth BW: 43.87 Hz)
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(b) The middle frequency band
(CF: 1,343 Hz, BW: 172.9 Hz)
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(c) The highest frequency band
(CF: 6,430Hz, BW: 732.4Hz)

Fig. 1. Sample standard deviation of the estimated ITDs as a func-
tion of the relative strength R. They were computed when R varied
with the step 0.01 from 0 to 1. The solid and dashed lines corre-
spond to results obtained using the zero-crossing-based and cross-
correlation-based methods, respectively. The vertical axis is normal-
ized by dividing by d2.

the desired contribution using the zero-crossing method is brief in
duration, while errors in estimating the weights using the cross-
correlation method affect sample points over a longer duration.

4. SPEECH RECOGNITION EXPERIMENTS

We evaluated the proposed method of signal enhancement by speech
recognition experiments using the DARPA Resource Management
(RM1) database [12] and the CMU SPHINX-III speech recognition
system, which is based on fully-continuous hidden Markov mod-
els. Using 13th-order mel-frequency cepstral coefficients as fea-
tures, 2,880 RM1 sentences recorded in a quiet environment were
used to train the recognition system, and 600 sentences were de-
coded to give a word error rate (WER). Each test utterance was cor-
rupted by adding another interfering speech signal which had the
same energy as the test utterance. To simulate the measurement of
signals that would be obtained by microphones in close proximity,
the target and interfering speech were combined with different sim-
ulated delays from sensor to sensor. The delays were created by
upsampling the original speech signals (which were recorded at a
sampling rate of 16 kHz), by a factor 4. The signals were combined
with independent delays inserted on one side which were selected
independently and randomly for the target and masker in the range
of −3 to 3 samples at 64 kHz, except that delays for the target and
masker were forced to be different from one another. As a result, the
net difference in ITD of target and masker ranged from 1 to 6 sam-
ples or 15.6 to 93.8 µs. If the microphones are separated by about 21
mm to avoid spatial aliasing at 8 kHz, this would correspond to dif-
ferences in azimuth of between about 14.9 and 100.7 degrees. The

Table 1. Comparison of the percentage WER obtained for the CMU
SPHINX-III speech recognition system using continuously-variable
masks versus binary masks and ITD estimation based on zero cross-
ings versus cross-correlation. Results are also shown with no inter-
fering masker, and with identical or statistically-independent white
Gaussian noise added to the two mixtures. The frame size was 25.6
msec, and the frame rate was 10 msec.

added white target target plus masker
Gaussian alone no zero crossing cross-corr.

noise proc. binary cont. binary cont.
none 7.3 90.2 36.7 11.8 88.3 23.0

independent 23.8 96.9 48.0 44.8 94.1 69.0
identical 45.6 24.0 89.5 39.3

target signal was always assumed to be the component with the more
positive delay. After combining the target and interfering speech, the
resulting signals were downsampled back to 16 kHz.

We used a 40-channel bank of Gammatone filters with center
frequencies spaced linearly in ERB (equivalent rectangular band-
width) from 170 Hz to 6,430 Hz. Assuming that the actual delays
for the desired target and interfering speech were known a priori, the
ITDs of the combined signal at each frequency were converted into
estimates of the relative strength of the target and masker accord-
ing to Eqs. (5) and (6). For the cross-correlation case, we adopted
Roman’s approximation given by

τ̄cc =
d1 + d2

2
+

1

wcf

{
arctan

[
(A2

2 − A2
1)

(A2
1 + A2

2)
tan β

]
+ kπ

}
,

k ∈ {0,±1}, (7)

where β = wcf · (d2 − d1)/2 ∈ [0, π]. If β ≤ π/2, k = 0. Other-
wise, k = 1 when A1 < A2 and k = −1 when A1 > A2 [10]. This
corresponds to the solution when ω1 = ω2 and T goes to infinity.
The time lag corresponding to the maximum of the cross-correlation
function was estimated by differentiating a 20th-order polynomial
approximation to the cross-correlation function in a region around
the observed discrete-time maximum within the time lags that are
less than the delay time between the microphones and finding the
root of the derivative closest to the discrete-time maximum using
Newtonian iteration.

Table 1 presents the WERs obtained using mixtures of the target
and interfering speech combined as described above. The WERs of
clean target speech in the absence of an interfering signal are also
included for comparison. It is seen that the use of the continuously-
variable masks provides much better recognition accuracy than that
of binary masks, and that estimation of ITDs using zero crossings is
more effective than estimation obtained using the cross-correlation-
based method. To obtain a crude characterization of the robustness
of the methods considered we also obtained the WERs of the same
signals in the presence of white Gaussian noise at a signal-to-noise
ratio of 20 dB. This noise was presented both identically to the two
sensors (which would correspond to an additional non-speech source
of interference) and independently to the two sensors (which would
correspond to sensor or measurement noise). The WER is affected
adversely by the addition of noise in all cases, but the superiority of
continuously-variable masks and estimation of ITD by zero cross-
ings remains evident.
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5. CONCLUSIONS AND FURTHER WORK

In this paper we have described a method that estimates continuously-
variable masks for recognizing speech in the presence of interfer-
ing speech. Our approach estimates the relative contribution of the
desired speech in mixtures by a derived mapping function between
the masks and ITDs so that the recognizer can decode speech fea-
tures successfully. In addition, estimation of ITD from zero cross-
ings provides estimates with less variability than estimates obtained
using cross-correlation, especially at low frequencies. The use of the
continuously-variable masking weights and ITD estimation based on
zero crossings provided good improvement in recognition accuracy
for speech in the presence of masking speech when the target and
masker arrive with different ITDs. While these results are promising,
the approach remains to be extended to more difficult scenarios such
as reverberant environments and multiple interfering speech sources.
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A. APPENDIX

In order to estimate the variability of estimates of ITD based on
cross-correlation, we follow almost the same procedure as in the
case of the zero-crossing-based method. As before, we start from
mixtures given by Eq. (1).

For finite-duration signals in a frame of duration 2T , the cross-
correlation function with time lag τ is expressed by

c(τ) =
1

2T

∫ T

t=−T

x1(t)x2(t + τ)dt. (A.1)

Since

x1(t)x2(t + τ)

= 1
2
[A2

1(cos(2ω1t + ω1(τ − d1) + 2φ1) + cos(ω1(τ − d1)))

+A1A2(cos(ω1t + ω2(t + τ − d2) + φ1 + φ2)

+ cos(ω1t − ω2(t + τ − d2) + φ1 − φ2) (A.2)

+cos(ω1(t + τ − d1) + ω2t + φ1 + φ2)

+ cos(ω1(t + τ − d1) − ω2t + φ1 − φ2))

+A2
2(cos(2ω2t + ω2(τ − d2) + 2φ2) + cos(ω2(τ − d2)))],

the derivative of the cross-correlation function c(τ) is

dc(τ)

dτ

= − 1
4T

[A2
1(sin(2ω1T ) sin(ω1(τ − d1) + 2φ1)

+2ω1T sin(ω1(τ − d1)))

+A1A2(
2ω2

ω1+ω2
sin((ω1 + ω2)T ) sin(ω2(τ − d2) + φ1 + φ2)

+ 2ω2
ω1−ω2

sin((ω1 − ω2)T ) sin(ω2(τ − d2) − φ1 + φ2)

+ 2ω1
ω1+ω2

sin((ω1 + ω2)T ) sin(ω1(τ − d1) + φ1 + φ2)(A.3)

+ 2ω1
ω1−ω2

sin((ω1 − ω2)T ) sin(ω1(τ − d1) + φ1 − φ2))

+A2
2(sin(2ω2T ) sin(ω2(τ − d2) + 2φ2)

+2ω2T sin(ω2(τ − d2)))],

where we assume ω1 �= ω2 since they will be random variables
uniformly distributed within the bandwidth of a band. Using the
approximation of small ωi(τ−di), the ITD at the maximum of cross-
correlation can be obtained from

τ [A2
1(sin(2ω1T )ω1 cos(2φ1) + 2ω2

1T )

+ 2A1A2
ω1+ω2

sin((ω1 + ω2)T )(ω2
1 + ω2

2) cos(φ1 + φ2)

+ 2A1A2
ω1−ω2

sin((ω1 − ω2)T )(ω2
1 + ω2

2) cos(φ1 − φ2)

+A2
2(sin(2ω2T )ω2 cos(2φ2) + 2ω2

2T )]

≈ d1[A
2
1(sin(2ω1T )ω1 cos(2φ1) + 2ω2

1T )

+ 2A1A2
ω1+ω2

sin((ω1 + ω2)T )ω2
1 cos(φ1 + φ2) (A.4)

+ 2A1A2
ω1−ω2

sin((ω1 − ω2)T )ω2
1 cos(φ1 − φ2)]

+d2[
2A1A2
ω1+ω2

sin((ω1 + ω2)T )ω2
2 cos(φ1 + φ2)

+ 2A1A2
ω1−ω2

sin((ω1 − ω2)T )ω2
2 cos(φ1 − φ2)

+A2
2(sin(2ω2T )ω2 cos(2φ2) + 2ω2

2T )]

−[A2
1 sin(2ω1T ) sin(2φ1) + 2A1A2 sin((ω1 + ω2)T ) sin(φ1 + φ2)

+2A1A2 sin((ω1 − ω2)T ) sin(φ1 − φ2) + A2
2 sin(2ω2T ) sin(2φ2)].
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