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ABSTRACT

In this paper, we consider the problem of detecting and lo-
cating buried land mines and subsurface objects by using
seismic waves. We demonstrate an adaptive seismic sys-
tem that maneuvers an array of receivers, according to an
optimal positioning algorithm based on the theory of opti-
mal experiments, to minimize the number of distinct mea-
surements to localize the mine. The adaptive localization
algorithm is tested using numerical model data as well as
laboratory measurements performed in a facility at Georgia
Tech. It is envisioned that the future systems should be able
to incorporate this new method into portable mobile mine-
location systems.

1. INTRODUCTION

Buried land mines and similar subsurface structures pose a
huge threat to resettling civilians. It takes significant time
and resources to clear out regions contaminated by mines,
so it is important to develop efficient detection and localiza-
tion systems to create a safer environment. Georgia Tech
has built a laboratory to collect the real data needed to in-
vestigate buried land mine and subsurface target detection
problem [1]. In laboratory data, the detection schemes us-
ing seismic waves have been extensively tested and shown
to have satisfactory mine detection probabilities [1, 2].

Seismic waves, scattered from man-made targets, in-
duce resonances that result in a stronger sustained reflection
from mines than from clutter objects. Hence, it is possi-
ble to use seismic imaging to discriminate land mines from
common types of clutter such as rocks, wood, etc. To detect
a mine, a seismic wave is launched from a source at a known
location. The seismic wave then travels through the soil and
interacts with objects under the ground. The resulting prop-
agating waves in an elastic medium are of two main types:
surface waves and body waves. The existing research con-
centrates on the reflected surface waves (Rayleigh waves)
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for detection, because the Rayleigh waves carry most of the
returned energy.

Typical imaging methods are time consuming and ex-
pensive if measurements are taken over 2D grids with large
apertures in order to have sufficient image resolution over
the space of interest. Once a complete image is formed
from a large data set, it is then searched to find targets [2].
However, to image any single target, only a small subset
of the measurements is actually required, but this subset is
not known ahead of time. Therefore, if we want to reduce
the time or the resources needed to localize a target, we can
use maneuvering receiver(s) to take the minimum number
of measurements needed, if we can develop an adaptive al-
gorithm to find the best receiver positions. With each new
measurement we want to maximize the information gained
about the target. In our case we use a maneuvering 3x3 array
to create an efficient system to detect and locate mines. In
the method proposed here, any one image, created at succes-
sive measurements, has low resolution. However, as the ar-
ray maneuvers, the cumulative imaging operation improves
the resolution around the true mine location.

The array movement is based on the theory of optimal
experiments [3]. We employ a 2D sensor array with known
relative receiver positions. Starting at an arbitrary array po-
sition, we calculate an initial estimate of the target loca-
tion. Then, the variance of the location estimate is calcu-
lated, by using the Fisher information matrix (FIM). Based
on the expected value of the FIM, the next optimal array
position is determined by using the theory of optimal ex-
periments [3, 4]. The search for the optimal array position
maximizes the determinant of the Fisher information ma-
trix. The two steps involved in the maneuver strategy for a
mobile array of sensors are shown in Figs. 1(a) and (b).

The following sections will describe the data model, which
leads to the target position estimate and its performance
bounds. Then the algorithm for determining the next op-
timal array position is shown. Performance of the algorithm
is demonstrated by using the experimental data collected in
a laboratory setting [1].
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Fig. 1. Algorithm mechanics illustrated: (a) Source gener-
ates a probing pulse, and the waves are reflected from the
target and collected by the array. At step i, zi denotes the
target position and ζi the array center. (b) Estimate of the
next array position ζi+1 by using the cumulative Fisher In-
formation Matrix measure and a circular constraint on the
movement.

2. DATA MODEL, TARGET LOCATION
ESTIMATION AND PERFORMANCE BOUNDS

Consider a single seismic source and an array that consists
of P seismic receivers, where the source and receivers are
co-planar. We model the soil as a highly dispersive medium
with frequency dependent velocity. Hence, the signal pro-
cessing is done in the frequency domain, even though the
measurements are taken in the time domain. The source
generates a probing pulse which is reflected from buried
targets and is collected by the seismic sensors. The prob-
ing pulse and reflected waves at each sensor are separated
by using the algorithm in [6]. The reflected signal from the
target can be represented as [5]:

y(ω) = A(ζ, z, ω)s(ω) + n(ω), (1)

where y(ω) ∈ CP×1 is the noisy array output vector, n(ω) ∈
CP×1 is a complex additive noise, and s(ω) ∈ CK×1 is the
signal vector. The array manifold A(ζ, z, ω) has elements
given by the Green’s function:

g(r, r′, ω) =
i

4
H

(1)
0

(
ω

v(ω)
|r − r′|

)
(2)

where H
(1)
0 is the zero-order Hankel function of the first

kind, and v(ω) is the frequency-dependent Rayleigh wave

velocity. Spectrum analysis of the surface waves is used to
determine the velocity vs. frequency [6].

Let Yt =
[
yT

t (ω1) , . . . , yT
t (ωN )

]T
, Yt ∈ CPN×1, be

the data vector, formed by aggregating the Fourier transform
at frequencies ωi of the received data yt at each seismic
sensor during the batch period t, where i = 1, 2, . . . , N .
Under the i.i.d. Gaussian noise assumption, the probability
density function for the current received data is given by [7,
?]:

p(Yt) =
N∏

l=1

1
πP σ2P

t

exp
{
− 1

σ2
t

||yt(ωl) − At(ωl)st(ωl)||2
}

(3)
Using (3), one can calculate the negative log-likelihood func-
tion of the data:

L− = NP log(πσ2
t ) +

1
σ2

t

N∑
l=1

||yt(ωl) − At(ωl)st(ωl)||2.
(4)

The ML estimate, maximizing the log-likelihood, can be de-
termined by minimizing L−. In (4), both the target signal
and the noise variance are unknown. Therefore, we first
estimate the noise variance by fixing the target position in
At(ω) and the source signal s(ω). The ML estimate of the
noise variance σ2

t is given by:

σ̂2
t =

1
NP

N∑
l=1

||yt(ωl) − At(ωl)st(ωl)||2. (5)

When the estimated noise variance is used in conjunction
with (4), the ML target signal estimate can be calculated:

ŝt(ωl) =
(
AH

t (ωl)At(ωl)
)−1

AH
t yt(ωl). (6)

Substituting (5) and (6) into (4), one can determine the ML
cost function to minimize as a function of z:

Jt(z) =
N∑

l=1

∣∣∣∣
∣∣∣∣
{

I − At(ωl)
(
AH

t (ωl)At(ωl)
)−1

AH
t (ωl)

}
yt(ωl)

∣∣∣∣
∣∣∣∣2

(7)

The target location estimate is then given by the minimum
of the cost function (7):

z = arg min
z

Jt(z). (8)

The performance bound, in term of Fisher information
matrix is derived next. Assuming that the variance of the
additive noise in (1) is known, the log-likelihood function
for a single target can be written as:

L(ζt, z) .= − 1
σ2

t

N∑
l=1

||yt(ωl) − at(ζt, z, ωl)st(ωl)||2 (9)

where at(ζt, z, ω) is the propagation (steering) vector from
the array center to the target position. The (i, j)th element
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of the FIM is given by the partial derivative of (9) with re-
spect to the ith and jth parameters of the vector z [7]:

Fi,j(z, ζt) = Ey

{
∂2L(z, ζt)

∂zi∂zj

}

= − 2
σ2

t

N∑
l=1

�
{(

∂at(z, ζt, ωl)
∂zi

)H
∂at(z, ζt, ωl)

∂zj

}

(10)

where Ey{.} denotes the expected value, and F is the Fisher
information matrix as a function of the target position z and
the array center ζ. The elements of the steering vector are
given in terms of 2-D Green’s function in (2). The partial
derivative of the steering vector is calculated with respect to
the target coordinates for a fixed array center.

3. MOVEMENT OF THE SEISMIC ARRAY VIA
OPTIMAL EXPERIMENTS

In the previous section, we described how to determine the
target position and its FIM which represents the uncertainty
about the estimates as a function of the array center posi-
tion. Recall that the sensors in the 2D array have known
locations with respect to the array center ζ. Suppose that
we have estimated the target location at batch t, and now
we are interested in determining the next optimal array cen-
ter position candidate for the batch t + 1. Our approach in
selecting the new sensor position to reduce the expected un-
certainty in the estimated target coordinates is to minimize
the determinant of the CRLB, or equivalently, maximize the
determinant of the FIM as a function of the array center.
In the literature of optimal experiments, this technique is
called D-optimal design [3], and has been applied to metal
detectors in [4]. Other approaches might minimize the trace
of the CRLB or minimize its maximum eigenvalue.

Let q represent the determinant of the FIM. The cumula-
tive effect of the measurements up to batch t can be written
as:

q ({ζ1, . . . , ζt}) = |F (ζ1, . . . , ζt)| =

∣∣∣∣∣∣
t∑

j=1

F (ζj)

∣∣∣∣∣∣ (11)

where | · | stands for determinant and Ft represents the FIM
at batch t. The logarithmic increase due to the additional
measurements at batch t + 1 is given by:

δq(ζt+1) = ln q ({ζ1, . . . , ζt+1}) − ln q ({ζ1, . . . , ζt})
= ln

∣∣I + F (ζt+1)B−1
t

∣∣
(12)

where I is an identity matrix, and Bt =
t∑

j=1

F (ζj). To

achieve the maximum expected information gain, the next
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Fig. 2. Initial target location estimate is done using the ML
cost function (7), shown on a dB scale.

optimal array center can be determined by

ζt+1 = arg max
ζ

ln
∣∣I + F (ζt+1)B−1

t

∣∣ . (13)

In this optimization problem, there are additional constraints
that come from the configuration of the seismic system.
First of all, the target reflections do not behave as an omni-
directional active source. Hence, we need to make sure that
the receiving array is between the source and the targets all
the time to receive the reflected waves. One way to impose
this condition is to use a movement step size of radius r
from the previous array center position as shown in Fig. 1.
As a result, the maximum of (13) is calculated on a circle
of radius r, where the center of the circle is at the previous
optimum array center position.

4. PROCESSING OF EXPERIMENTAL DATA

An experiment has been conducted in our laboratory setting,
where buried mines in a sandbox are used as targets [1]. A
shaker is used as a seismic source, where the input signal
is a differentiated Gaussian pulse centered at 450 Hz. In
the experiment, the seismic sensors are ground contact ac-
celerometers. The target is a TS-50 (anti-personnel) land-
mine buried at a depth of 1 cm. We estimate the wavenum-
ber for the reflected signals at different frequencies by us-
ing the algorithm presented in [6]. To separate the forward
and reflected waves, a linear array of fifteen sensors is used,
however only three are kept for use in the maneuver al-
gorithms. With three linear arrays, a total of nine sensors
(3 × 3) are used in actual imaging.

Once the data is collected and the waves are separated
the next step is to estimate the target position. The initial
estimate is shown as a surface plot (Fig. 2). The surface plot
is obtained by using (7), and this cost function is calculated
at each point in a 2D grid. The minimum of Jt(z) gives
the target position estimate. However, the inverse of this
function is plotted in the surface plots. Based on an initial
estimate, the next optimal array position is determined by
using (13). This function is calculated at each grid point
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Fig. 3. Next Optimal array position: Surface plot obtained
by using (13), shown on a linear scale, with a circle of radius
30 cm.

as a function of array center position, using the estimated
target position from the previous step. The surface plot is
shown in Fig. 3, along with the circle constraint, at a radius
of 30 cm.

Once the next optimum array position is determined and
the array is moved to a new position, a new batch of data is
collected. We then append the new data set to the exist-
ing data. The new target position estimate and the next op-
timum movement are determined by using the cumulative
data. Further steps are shown in Figs. 4. With each succes-
sive step the target position estimate is improved, along with
a decrease in the uncertainty ellipse, because the cumulative
estimation is effectively increasing the aperture.

5. CONCLUSIONS

The algorithm presented in this paper shows that it is pos-
sible to control a maneuvering seismic array to find buried
targets from reflected surface waves. A complete mine find-
ing system would require some more steps to distinguish a
land mine from clutter. Since the maneuver algorithm can
obtain very accurate estimate of the target location, the ar-
ray would be positioned to exploit the “resonance property”
of buried land mines to make the final confirmation. The
example in the paper uses a total of 180 seismic measure-
ments to locate the target. This can be compared with a
conventional method that would scan an entire grid of size
(100 × 100) in order to find the same target within an area
of (2× 2) meters [1, 2]. Furthermore, the whole scan would
take a few hours to isolate a resonating target.
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