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ABSTRACT

We consider the problem of reconstructing superimposed tempera-
ture and wind flow fields from acoustic measurements. A new tech-
nique based solely on acoustic waves propagation is presented. In
contrast to the usual straight ray assumption, a bent ray model is con-
sidered in order to achieve higher accuracy. Under this assumption,
we propose an iterative reconstruction algorithm that allows to en-
tirely recover the considered fields. It alternates between estimating
the fields of interest and the corresponding acoustic ray trajectories.
Simulation results confirm the effectiveness and fast convergence of
our scheme.

1. INTRODUCTION

Tomography methods aim at recovering an unknown multi-dimensio-
nal field based on the interactions between the considered medium
and radiations emitted by measuring devices. They offer an attractive
alternative to classical methods employed in sensor networks, since
they allow non-invasive measurements with a significantly smaller
number of sensing devices. In fact, the information acquired by
processing signals transmitted and received at multiple locations al-
lows to acquire a global knowledge about the measured field. This is
in sharp contrast to the one-sensor one-measurement setup provided
by traditional sensor networks.

In this work, we focus on the use of acoustic tomography for
measuring temperature and wind flow fields. The strong dependance
of sound propagation on these quantities offers promising perspec-
tives for accurate estimation of the entire fields. It thus stands as a
good candidate to replace some of today’s expensive meteorological
techniques using sodar or lidar.

The estimation of temperature fields is a scalar tomography prob-
lem in the sense that it amounts to recover a scalar function from
line-integral measurements. Under quite general conditions, acoustic
time of flight data typically provide the information needed to solve
this problem by means of the Radon transform. The reconstruc-
tion of wind flow fields, however, deals with vector tomography for
which acoustic techniques are only partially envisioned in practice.
The main reason lies in the existence of “invisible fields” for time of
flight measurements. This fact was first noticed by Johnson et al. [1]

This research was supported by the National Competence Center in Re-
search on Mobile Information and Communication Systems (NCCR-MICS,
http://www.mics.org), a center supported by the Swiss National Science
Foundation under grant number 5005-67322.

in their early study of acoustic time of flight data. Later, Braun and
Hauck [2] pointed out that time of flight measurements only allow to
reconstruct the source-free component of the vector field. They for-
mulated conditions enabling full vector field recovery and proposed
to estimate the remaining (curl-free) component using an additional
line-integral measurement. The two line integrals, referred to as lon-
gitudinal and transversal interactions, actually correspond to the in-
tegration of the tangential and normal component of the vector field
along the propagation path. The method they proposed to measure
the transversal component is based on an optical Schlieren technique
that is only applicable in rather specialized scenarios [2].

Motivated by the practical need of full vector field reconstruc-
tion, we propose in this paper a new method for measuring the trans-
versal component based solely on acoustic wave measurements. We
show that the transversal interaction can be inferred from the angle
of arrival of the sound waves. Based on time of flight and angle of ar-
rival measurements, we then propose an algorithm that alternates be-
tween estimating the ray trajectories and the fields of interest. High
reconstruction accuracy is achieved by replacing the commonly as-
sumed straight-ray model by a bent-ray model [3]. We observe that
the procedure converges even in cases where the ray paths differ con-
siderably from straight lines. To our knowledge, the joint estimation
of ray trajectories, temperature and wind flow fields has never been
addressed before.

2. THEORY AND FUNDAMENTALS OF THE METHOD

2.1. Scalar and Vector Tomography

Classical tomography methods, referred to as scalar field tomogra-
phy, assume that every point of the field is characterized by a scalar.
In this case, the field can be determined from line-integral measure-
ments along multiple directions by applying an inverse Radon trans-
form. The ability to reconstruct a scalar function using tomography
techniques has resulted in a wealth of applications in many disci-
plines. Examples are x-ray tomography in biomedicine, acoustic to-
mography in oceanography and seismic tomography in geophysics.
A number of other applications has raised the need for similar meth-
ods in tomographic reconstruction of vector fields. The basic idea,
proposed in [2], is to treat each component of the original vector
field tomography problem using a scalar field tomography method.
In two-dimensional acoustic tomography, a natural choice for the
corresponding line-integral measurements are the so-called longitu-
dinal and transversal interactions, denoted respectively by lΓ and
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tΓ. More precisely, for any vector function f defined on the region
of interest, lΓ and tΓ are given by

lΓ =

�
Γ

f · t ds ,

tΓ =

�
Γ

f · m ds ,

(1)

where Γ is the ray path, t the unit vector tangent to Γ and m the
unit vector normal to Γ (see Fig. 1(a)). If f represents a wind ve-
locity, then the integral lΓ typically arises in acoustic time of flight
measurements. Unfortunately, the second integral tΓ cannot be com-
puted from time of flights and has never been considered in flow
reconstruction problems using acoustic tomography.

2.2. Geometrical Acoustic

The main advantages offered by the ray theory of sound wave prop-
agation are its simplicity and the clarity it offers in representing the
underlaying physical phenomena. One of the principal tasks is to
obtain the ray path along which the energy of a sound wave is prop-
agated. In previous research on acoustic tomography, a straight-ray
model is usually assumed. This seriously limits the quality of the
reconstruction since it does not account for the deformation of the
wave trajectory. In this paper, we propose to use a bent-ray model to
provide a more precise estimation of the vector fields and to extend
the applicability of the method to strong fields. In the following, we
will use the equations derived by Ostashev [4] for the ray path in an
inhomogeneous moving medium

ẋ(s) = c
b

‖b‖ + v ,

ḃ(s) = −c0∇c

c
− Jvb +

b · v∇c

c
,

(2)

where the sound speed c is written as c = c0 +∆c for some average
sound speed c0 and variation ∆c. In the above equations, s and x are
respectively the arc length and the space coordinate measured along
Γ, Jv is the Jacobian matrix of the wind field v, and b is the vector
with norm ‖b‖ = c0/(c + n · v) and direction n = b/‖b‖ normal
to the wave front. In order to compute the ray path, we use the initial
conditions

x(0) = xT and b(0) =
c0

c(0) + n(0) · v(0)
n(0) . (3)

The starting point corresponds to the position xT of the transmitter
and the initial ray direction n(0) = (cos θ, sin θ)T is chosen such
that the ray reaches the receiver. The angle θ is shown in Fig. 1(a).

2.3. Temperature and Wind Reconstruction

In dry air, the temperature T can be inferred from the speed of sound
through the relation

c =
�

γRT , (4)

where R is the gas constant and γ = 1.4. We will thus concentrate
on estimating c in the rest of the discussion. The total speed u, also
referred to as group velocity, is given by

u = cn + v = (c0 + ∆c)n + v. (5)

In this work, we wish to reconstruct both the temperature (scalar)
and wind (vector) field. To this end, we define the longitudinal inter-
action of a joint vector and scalar field as

lΓ =

�
Γ

(∆cn + v) · t ds . (6)

The time of flight tij of a sound ray from transmitter i to the receiver
j along the trajectory Γij can be expressed using a simple Taylor
expansion as

tij =

�
Γij

1

u · t ds

�
�

Γij

1

c0n · t ds −
�

Γij

(∆cn + v) · t
(c0n · t)2 ds

=

�
Γij

1

c0n · t ds − F (xTi ,xRj ,v, ∆c)

c2
0

lΓij (7)

where xTi and xRj are the position of transmitter i and receiver
j, respectively. The term F (xTi ,xRj ,v, ∆c) is a correction factor
needed to replace (c0n·t) by c0. Typically, both ∆c and v are small,
hence F (xTi ,xRj ,v, ∆c) � 1. The longitudinal interaction lΓij

can thus be estimated from (7) using time of flight measurements.
The transversal interaction of a joint vector and scalar field can

be defined similarly to (6) as

tΓ =

�
Γ

(∆cn + v) · m ds . (8)

Since the total speed along the trajectory is tangent to the trajectory,
it holds that (c0n + ∆cn + v) ·m = 0. The transversal component
for trajectory Γij can thus be written as

tΓij = −
�

Γij

c0n · m ds

= −c0

�
Γij

�
cos θij

sin θij

�
· (t × ez) ds

� c0

�− cos θij(yRj − yTi) + sin θij(xRj − xTi)
�
,(9)

where in the second equality, we use the fact that m = t × ez ,
ez being the unit vector parallel to the z axis. We also assume n
to be constant, which is to say that the temperature and wind fields
are uniform. This strong assumption is however relaxed in the prac-
tical algorithm described in Section 3, since we are computing the
transversal component of the error field and only the difference be-
tween n and its current estimate n̂ is assumed to be constant. Equa-
tion (9) shows that the transversal interaction can be approximately
computed with the angle of arrival θij of the sound wave and the ex-
act position of the transmitter and the receiver. Moreover, the feed-
back scheme ensures that the approximation error does not influence
the result but only the number of iterations needed for convergence.

2.4. Measuring the Angle of Arrival

We propose two methods for measuring the angle of arrival of the
sound wave. If we ensure that around the receiver we have v = 0,
e.g. by putting some wind shields, then the angle θ is equal to the
angle of arrival of the sound wave.

2.4.1. Acoustic dipole

An acoustic dipole consists of two sensors (microphones, hydrophones,
etc.) placed at a certain distance on the measurement plane. If the
curvature of the received sound wave can be neglected (far field as-
sumption), the time difference of arrival of the test signal at the two
sensors is proportional to the distance between the sensors and the
cosine of the angle of arrival. Therefore, the angle of arrival can be
estimated from this quantity and the distance between the sensor can
be adjusted to obtain a certain sensitivity.
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Fig. 1. (a) An example of the ray trajectory with the vectors n, t and
m; (b) The region of interest is surrounded by 8 transmitters and 8
receivers.

2.4.2. Blumlein microphone

This method is based on the use of two directional sensors. The
principle is very well known in the field of audio stereo recording.
It employs two sensors which are sensitive to acoustic pressure on a
diaphragm. The pressure changes proportionally to the cosine of the
angle of arrival. The measured amplitude is thus related to the angle
of arrival.

3. ITERATIVE ALGORITHM

We consider a certain region surrounded by emitters and receivers,
as show on Fig. 1(b). Each transmitter is sending a signal to all
receivers. We measure the time of flight and the angle of arrival
of the sound wave front. In order to implement the reconstruction
algorithm, we cover the region of interest with tessellation cells, as
it is done in finite element methods. Every value inside the cells is
approximated by a linear combination of the nodal point values

f(x) =
N�

i=1

fiαi(x), (10)

where f(x) can be any component of the wind field, vx, vy or tem-
perature variation related to ∆c. The value fi is the corresponding
value at node i. For example, one can cover the domain with a tiling
of triangles. In such a case N = 3 and the function αi(x) is the two-
dimensional spline of order 1. Equation (10) allows to write the set
of interactions as a linear combination of the unknown components
vx, vy and ∆c

�
Ml

Mt

�
·
�
� vx

vy

∆c

�
� =

�
lΓ
tΓ

�
(11)

The previous equation is an approximation of (6) and (8), where the
integrals are replaced with sums, and the components vx(x), vy(x)
and ∆c(x) are modelled using (10). The matrixes Ml and Mt are
computed from (6), (8) and (10). This system allows computing the
temperature and wind flow, once the trajectories are known.

In our algorithm, iterations alternate between estimating the tem-
perature and the wind field and computing the trajectories. The dif-
ference between the estimated and true longitudinal and transversal
interactions is then used to compute the new speed variation and
wind field estimate

∆c(l+1) = ∆c(l) + ∆c(l)
e ,

v(l+1) = v(l) + v(l)
e ,

(12)

where l is the iteration number and ∆c
(l)
e and v

(l)
e are the new up-

dates.
In the following we summarize the algorithmic steps:

1. Set v(0) = 0, ∆c(0) = 0, l = 0.

2. Compute trajectories Γij from (2), using the current estimates
v̂(l) and ∆c(l), and set θ̂(l) such that the trajectory reaches the
receiver.

3. Calculate the estimated time of flight:

t̂ij =

�
Γ̂ij

1

û(l) · t ds. (13)

4. Compute estimation of longitudinal interactions of the error
field:

l̂Γij (ve, ∆ce) = (tij − t̂ij)
c2
0

F̂ (l)(xT ,xR, v̂(l), ∆ĉ(l))
,

(14)
with

F̂ (l)(xT ,xR, v̂(l), ∆ĉ(l)) =
c2
0

S(Γ̂ij)

�
Γ̂ij

1

(c0n̂(l)t̂(l))2
ds,

(15)
where S(Γ̂ij) is the length of Γ̂ij .

5. Estimate the transversal interaction of the error field, as:

t̂Γij (ve, ∆ce) = tΓij (v, ∆c) − tΓ̂ij
(v̂(l), ∆ĉ(l))

= c0((sin θ − sin θ̂(l))(yR − yT )

+ (cos θ − cos θ̂(l))(xR − xT )).

(16)

6. Build the system (11) using (10) and the current estimation of
trajectories Γ̂(l).

7. Solve the system and compute errors v̂
(l)
e and ∆ĉ

(l)
e .

8. Update the current version of the wind flow and the speed
variation as shown in (12).

9. Set l = l + 1 and go to step 2.

4. CRAMER-RAO LOWER BOUND FOR THE TIME OF
FLIGHT MEASUREMENTS

Several technical aspects influence the performance of the tomo-
graphic reconstruction. The most important are:

1. The measurement accuracy of the distance between transmit-
ter and receiver;

2. The accuracy of the travel-time measurements and the angle
measurements;

3. The coverage of the area by sound rays and the ability of the
technique to resolve different acoustic paths.

Even thought the accuracy depends on many factors, in order to get
an intuition about the errors, we show the Cramer-Rao lower bound
on time of flight estimation. Moreover, in the case of using acoustic
dipole for the angle estimate, we compute the angle of arrival from
the difference of the two time of flight measurements.

Suppose we want to estimate the time of flight tij of an acoustic
signal embedded in white Gaussian noise. We assume that the sig-
nal autospectrum is two sided and extends from f1 to f2 Hz (and
also from −f1 to −f2 Hz). Assume that the spectral density is
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S0/2[W/Hz], while the spectral density of the noise is N0. There-
fore, the signal power is S = S0(f2 − f1), and the noise power is
N = N0(f2 − f1). If we compute the Cramer-Rao lower bound for
the above case of signals in white gaussian noise [5], we obtain:

σ2
t ≥ 3

8π2To

1

SNR
1

(f3
2 − f3

1 )
(17)

where σ2
t is the variance of time of flight, SNR = S/N , and To is the

observation time. In terms of bandwidth W and central frequency
f0, taking that f1 = f0 − W/2 and f2 = f0 + W/2, the variance
can be written as:

σ2
t =

�
1

8π2

�
1

SNR
1

ToW

1

f2
0

1

(1 + W 2/12f2
0 )

. (18)

If we change the parameters in (18) with the one that we use in our
simulations, To = 1ms, f0 = 40kHz, W = 4kHz and for the two
cases of SNR, we have

SNR = 50dB −→ σt � 4.4ns,

SNR = 30dB −→ σt � 44ns.
(19)

To convert this accuracy to the temperature and wind estimation ac-
curacy, we consider the worst case of wind speed v = 50m/s, and
we obtain:

SNR = 50dB −→ ∆v = 10−5m/s, ∆T = 0.001K,

SNR = 30dB −→ ∆v = 0.3 · 10−4m/s, ∆T = 0.01K.
(20)

This is a promising result, since even for a very low signal to noise
ratio we still can have a very high estimation accuracy.

5. SIMULATION RESULTS

In this section, we present the simulation results for the setup shown
on Fig. 1(b). The true sound field variation ∆c is given on Fig. 2. On
Fig. 3, we plot the reconstruction error of ∆ĉ as a percentage of the
full speed c0 + ∆c. The results show an error of less than 1% and
confirm a good performance of the proposed algorithm. In the case
of wind speed reconstruction, the true wind speed is given by the
constant speed of v = 7m/s. The difference between the true value
and reconstruction is shown in Fig.4. The arrows represent the wind
vector direction at the tessellation grid points. We also found that
the maximum difference in the amplitude is ∆v = 0.25 m/s, which
corresponds to an error of 3.5%. The algorithm converges after only
5 iterations.

6. CONCLUSIONS

The goal of this paper has been to present a new technique for the re-
construction of superposed two-dimensional temperature and wind
flow fields, in the framework of acoustic tomography. In particu-
lar, we have shown that the transversal component of the resulting
field can be deduced from the angle of arrival of the sound ray. The
suggested iterative algorithm shows a good performance in terms of
estimation accuracy and fast convergency. We are currently building
a laboratory experiment to reconstruct actual flow and temperature
fields from ultrasound tomographic measurements (with the para-
meters presented in Section 4) to experimentally validate the above
simulations.
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Fig. 2. True variation of sound speed ∆c over the region of interest.
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