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ABSTRACT
A new algorithm is proposed for bearing estimation of the
narrow-band near field sources in the spherical coordinates
(azimuth, elevation and range), which can distinguish 2p
independent sources with a cross array of 2p + 3 elements
by exploiting the time-domain and space-domain correlations
of impinging signals jointly. The number of distinguishable
sources in our algorithm is more than double of that in
conventional algorithms when the number of array elements is
the same. In addition, our algorithm exploits the eigen values
and vectors simultaneously, and then the calculated parameters
only need simple pairing and the multidimensional searching
can be omitted completely. Simulation results demonstrate the
novelty, validity and effectiveness of the proposed algorithm.

1. INTRODUCTION
Lots of researches on array processing were focused on the
far-field sources. When a source locates in the Fresnel region
of the array aperture[1], the far-field assumption is not valid
and a more accurate approximation is applied in this case,
which considers the second Taylor expansion of the non-linear
propagation delay. After exploiting this expansion, the new
steering vectors are characterized by not only the impinging
DOAs, but the ranges as well. Then, the accurate depiction of
the space signature of the signals allows for the joint estimation.

In the conventional near-field signal processing, the number
of distinguishable sources is much fewer than that in far-field
scenarios. For example, a ULA with 2p + 1 elements can
distinguish 2p sources in 2-D far-field scenarios, but only p
sources in the near-field ones in most proposed algorithms
[1-2]. The number of distinguishable sources of the near-field
signals is only half of the far-field signals. The algorithms in
[3-4] can estimate more sources, but they have some constraints
on the sources’ frequencies.

In addition, the estimation in the 3-D near-field scenarios is
a multidimensional problem, where the multidimensional search
is an extremely time-consuming operation. Many algorithms [3-
4], based on the ESPRIT or matrix pencils can avoid this step,

* Partially supported by the National Natural Science Foundation (No.
60502022) and the Research Fund for Doctoral Program of Higher Edu-
cation (No. 20020698024) of China.

but the pair operation they proposed is also a time-consuming
one.

In this paper, a novel bearing estimation algorithm is
proposed for 3-D near-field sources, which exploits both the
space-domain and time-domain correlations. As a result, it can
distinguish 2p sources with a cross array of 2p + 3 elements,
more than double of the most conventional ones when the array
elements are the same number. For instance, the algorithm
in [5] can only distinguish p sources with 4p + 2 elements.
In addition, this algorithm does not need the multidimensional
search and its pair operation is very simple. Besides them, its
computational burden is comparable with those based on the
second-order statistics ones, for it only needs the same number
of snapshots as the other second-order statistics ones.

2. SYSTEM MODEL

Consider M near-field independent sources imping upon a cross
array aligned with the X and Y axes (shown in Fig. 1). 2p + 1
elements are on the X axis and their center is designated as
the phrase reference point and the origin of the coordinate
system. 3 elements are on the Y axis, and their center is also
the origin of the coordinate system. Two array branches both
have interelement spacing d. Then, the signal received by the
(l, 0)-th and (0, l)-th sensor are expressed as

xl,0(t) =
M∑

m=1

sm(t)e−jτxl(m) + nl,0(t), l = −p, . . . , p (1)

x0,l(t) =
M∑

m=1

sm(t)e−jτyl(m) + n0,l(t), l = −1, 0, 1 (2)

where sm(t) denotes the m-th source signal, {nl,0(t), n0,l(t)}
are the additive white Gaussian noise (AWGN), and {τxl(m), τyl(m)}
are delays of the m-th impinging signal propagation time dif-
ference between sensor "0" and sensor (l, 0) and (0, l), re-
spectively. According to [5], (1)(2) can be approximated
as:

xl,0(t) =
M∑

m=1

sm(t)e−j(ωmxl+φmxl2) + nl,0(t) (3)

x0,l(t) =
M∑

m=1

sm(t)e−j(ωmy l+φmyl2) + n0,l(t) (4)
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where ωmx, φmx, ωmy , and φmy are defined as

ωmx = −2πd sin θm cos αm

λ
, φmx =

πd2(1 − sin2 θm cos2 αm)
λrm

ωmy = −2πd sin θm sinαm

λ
, φmx =

πd2(1 − sin2 θm sin2 αm)
λrm

where θm, αm, and rm are the azimuth, elevation and range of
the m-th source, respectively; λ denotes the signal wavelength.

Our aim is to estimate these parameters {(ωmx, φmx)},
{(ωmy, φmy)} (m = 1, . . . ,M) and to further deduce the origi-
nal parameters {θm, αm, rm} (m = 1, . . . , M). Throughout the
rest of this paper, the following hypotheses are assumed to be
hold:

H1: The source signals sm(t), m = 1, 2, . . . , M are mutually
independent signals. They are narrow-band and stationary
processes.

H2: The additive noises, nl,0(t), l = −p, . . . , p, n0,1(t) and
n0,−1(t) are independent and zero-mean Gaussian processes
with covariance σ2, and are independent of the source
signals.

H3: The impinging DOAs (azimuth and elevation) of the sources
are not equal, i.e., θi �= θj and αi �= αj for i �= j.

H4: The interelement spacing of the array is d ≤ λ
4 ; Additionally,

the number of sources is M ≤ 2p.

3. BLIND ESTIMATION ALGORITHM

The estimation algorithm consists of two steps: In the first
step, ωmx and φmx are estimated from signals received by the
elements on the X axis, i.e., from xl,0 (l = −p, . . . , p); and
in the second step, ωmy are calculated from the correlation
between the signals impinging on the X axis and that impinging
on the Y axis. After a simple pairing process, the original
parameters of sources can be obtained in a closed form.

3.1. Estimate the ωmx and φmx

According to H1 and H2 in section 2, a set of space-domain
correlation variables can be defined as:

r−l−1,−l(τ) = E{x−l−1,0(t + τ)x∗
−l,0(t)}

= E

{
M∑

m=1

sm(t + τ)e−jωmx(−l−1)−jφmx(−l−1)2

M∑
i=1

s∗i (t)ejωix(−l)+jφix(−l)2
}

+ σ2δ(−l − 1 + l)

=
M∑

m=1

rsm(τ)ej(ωmx−φmx)e−2jlφmx (5)

where rsm(τ)
�
= E{sm(t + τ)s∗m(t)} and δ(·) is the Dirac

function.
Similarly,

rl+1,l(τ) = E{xl+1,0(t + τ)x∗
l,0(t)}

=
M∑

m=1

rsm(τ)e−j(ωmx+φmx)e−2jlφmx (6)

Fig. 1 System odel of near field scenarios

Concatenate r−l−1,−l(τ) and rl+1,l(τ) for l = −p,−p +
1, . . . , p − 1, two vectors r1(τ), r2(τ) can be constructed with
length 2p. They are

r1(τ) = [rp−1,p(τ), . . . , r−1,0(τ), . . . , r−p,−p+1(τ)]T (7)

r2(τ) = [r−p+1,−p(τ), . . . , r1,0(τ), . . . , rp,p−1(τ)]T (8)

Alternative forms for (7)(8) are

r1(τ) = BΦΩ∗rs(τ) (9)

r2(τ) = BΦΩrs(τ) (10)

where

B = [b(φ1x) . . . b(φMx) ] 2p × M

b(φmx) = [ e−2jpφmx e−2j(p−1)φmx . . . e2j(p−1)φmx ]T

rs(τ) = [ rs1(τ) . . . rsM (τ) ]T

Ω = diag{e−jω1x , e−jω2x , . . . , e−jωMx}
Φ = diag{e−jφ1x , e−jφ2x , . . . , e−jφMx}

By sampling r1(τ) and r2(τ) uniformly at N (N > M)
lags τn (τn = Ts, 2Ts, . . . , NTs), the "pseudo snapshots" can
be collected as follows:

R1 = [ r1(Ts) r1(2Ts) . . . r1(NTs) ] (11)

R2 = [ r2(Ts) r2(2Ts) . . . r2(NTs) ] (12)

And also we have

R1 = BΦΩ∗Rs (13)

R2 = BΦΩRs (14)

where R1 and R2 are with dimensions 2p × N ; Rs =
[rs(Ts), rs(2Ts), . . . , rs(NTs)].

If we define two matrices: A �
= BΦΩ∗ and Ψ �

= (Ω)2,
(13) and (14) can be rewritten as

R1 = ARs (15)

R2 = AΨRs (16)
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(15) and (16) are basic equations of the ESPRIT algorithm
[6]. We can estimate Ψ directly, thus ω1x, . . . , ωMx can
be deduced. But another set of parameters φ1x, . . . , φMx are
also important. To estimate them, an ESPRIT-like algorithm
− DOA-Matrix algorithm [7] is exploited in this case, which
can estimate A and Ψ jointly in a closed form by the EVD
operation, without the simultaneous diagonalization of multiple
matrices. In order to estimate A, we define a signature matrix
as

R = R2[R1]− (17)

where [•]− denotes the pseudo-inverse, i.e., R1[R1]− = I.
Lemma: If A is full column rank, Rs is nonsingular,

and Ψ has no equal elements on the main diagonal line, the
nonzero eigen values of R equal to the M diagonal elements
of Ψ, and corresponding eigenvectors equal to the M columns
of A, i.e.

RA = AΨ (18)

The detail proof is in [8].
According to the lemma, A is also estimated in a closed

form. It is directly to estimate φ1x, . . . , φMx from A because to
any column of A, it associates one φmx only, and furthermore,
the quotient of two adjacent rows is just e−2jφmx . Note that
the ωmx and φmx are one-to-one correspondences because they
are from the same pair of eigen value and vector, i.e., two
parameters are paired automatically.

3.2. Estimate the ωmy

ωmy are also estimated by exploiting the rotational invariant
of two matrices. First, two sets of space-domain variables are
defined as

r−l (τ) = E{x0,−1(t)x∗
l,0(t + τ)}

=
M∑

m=1

rsm(τ)ejωmy ej(−φmy+ωmxl+φmxl2) (19)

r+
l (τ) = E{x0,1(t)x∗

l,0(t + τ)}

=
M∑

m=1

rsm(τ)e−jωmy ej(−φmy+ωmxl+φmxl2) (20)

Concatenate r−l (τ) and r+
l (τ) for l = −p, . . . , p, two vectors

r−l (τ) and r+
l (τ) can be constructed with length 2p + 1, i. e.,

r−l (τ) = [ r−−p(τ) . . . r−p (τ) ]T

r+
l (τ) = [ r+

−p(τ) . . . r+
p (τ) ]T (21)

Similarly with (7)(8), they can be rewritten as

r−l (τ) = CDrs(τ), r+
l (τ) = CD∗rs(τ) (22)

whereC = [c(1), . . . ,c(M)] with dimensions 2p+1×M ; c(m)
= [ej(−φmy+ωmx(−p)+φmx(−p)2), . . ., ej(−φmy+ωmxp+φmxp2)];
and D = diag{ejω1y , . . . , ejωMy}.

Just like (11)-(18), we can estimate ωmy and C by sampling
r−l (τ), r+

l (τ) at the time domain, and exploiting the DOA-
Matrix algorithm.

Because C can be calculated directly, the pairing operation
of (ωmx, φmx) and φmy is relatively simple. By calculating
the phrase difference of the adjacent rows in C and comparing
with the estimate (ωmx, φmx) pair, we can deduce the right
pair of three parameters. In fact, our algorithm only needs a
two-parameter pair in this three-parameter estimation.

The proposed algorithm differs from not only those MUSIC-
like algorithms which exploit the eigen vectors only and need
the operation of multidimensional searching or rooting, but also
those ESPRIT-like algorithms which exploit eigen values only
and need more complex pairing operations. In addition, our
algorithm exploits both the space-domain and the time-domain
correlations, differing from those exploiting the space-domain
correlation only. Therefore, it can estimate more than double
independent sources of what other algorithms did.

Our algorithms can be summarized as:
1. Construct R1 and R2 according to (11) and (12), where

rp−1,p(Ts), . . . , r−p,−p+1(NTs) and r−p+1,−p(Ts), . . .,
rp,p−1(NTs) are calculated by (5) and (6).

2. Calculate R from (17).
3. Perform the EVD on R, Obtain its eigen values and vectors.
4. ω1, . . . , ωM is calculated from Ψ while φ1, . . . , φM is from

A. They are paired automatically.
5. Construct r+

l (τ) and r−l (τ). Estimate ωmy and C by means
of the similar methods in step 1-3.

6. Pair the estimate parameters {ωmx, φmx} and ωmy according
to the known structure of C.

7. Calculate the original source parameters {θm, αm, rm}.
4.SIMULATIONS

In simulations, we adopt a cross array of 7 sensors (p = 2) with
element spacing d = λ/4 to measure our algorithm. In contrast,
the Abed-Meriam’s method [5] is also simulated, which does
not work in this array configuration. To solve this, a cross
array of 9 sensors, 5 sensors are on every axis, is exploited to
measure it. Nt = 100 independent Monte-Carlo simulations are
performed. The performance is measured by the Root Mean
Square Error (RMSE) defined as

RMSE(x) =
1

‖x‖

√√√√ 1
Nt

Nt∑
i=1

‖x̂(i) − x‖2 (23)

where Nt is the number of Monte-Carlo trials, and ‖ • ‖
represents the Frobenius norm; and x represents the exact
values of parameters, and x̂(i) represents the estimated values
in the i-th Monte-Carlo trials, respectively. x can be such as
the impinging DOA (azimuth and elevation), {θi} and {αi}
(i = 1, 2, . . .), the range {ri}, (i = 1, 2, . . .). In each trial, 1024
real snapshots and 30 pseudo snapshots are collected.

The performance of two algorithms are shown in Fig. 2∼4
when M = 1, 2, 3, respectively. All parameters of sources in
the three cases are listed in Table 1. The SNR is defined
as SNR = 1/σ2. From the simulations, we observe that the
performance of our algorithm is close to Abed-Meraim’s [5]
when M = 1 although it exploits 9 sensors.

When M = 2, the performance of ours is better than Abed-
Meraim’s. Because 2 is the maximum number of distinguishable
sources in Abed-Meraim’s method, and no subspace is for noise,
its estimated eigen value is not very accurate.
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Table 1 Sources’ Parameters when M = 1, 2, 3

M r θ(◦) α (◦)

1 1/4λ 20 40
2 1/4λ 20 40

2/5λ 30 50
3 1/4λ 20 40

2/5λ 30 50
1/3λ 40 30

When M = 3, Abed-Meraim’s method does not work while
our algorithm still distinguishes every source well and the
performance is acceptable.

5.CONCLUSIONS
This paper proposed a 3-D near-field sources estimation algo-
rithm exploiting both the space-domain and the time-domain
correlations. This algorithm equivalently enlarges the aperture
of the array, therefore, the number of its distinguishable sources
exceeds double of what conventional algorithms offered when
the elements are the same number. Furthermore, it exploits
the eigen values and vectors simultaneously, and consequently,
it does not need the time-consuming multidimensional search
and the pair operation is rather simple. Besides them, its
computational burden is comparable with those based on the
second-order statistics algorithms. The simulation results show
the effectiveness of our algorithm.
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Fig. 2 The performance of two algorithms when M = 1
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Fig. 3 The performance of two algorithms when M = 2
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Fig. 4 The performance of our algorithm when M = 3
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